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Abstract 

 

Introduction: Dengue fever and diarrhoeal disease pose significant threats to national morbidity and 

mortality in Vietnam. Previous works have identified significant associations between meteorological 

factors and these infectious diseases, and developed climate-based prediction models. However, the 

selection of accurate long term prediction models in Vietnam is limited. Here, we developed climate 

factor-based traditional machine learning and deep learning models, and assessed them on forecasting 

dengue fever and diarrhoea incidence and outbreaks one to three months in advance.  

Methods: Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), attention 

mechanism-enhanced LSTM (LSTM-ATT), and Transformer models were compared with a selection 

of five traditional machine learning models on dengue fever forecasting. Models used a climate dataset 

of 12 meteorological factors covering temperature, rainfall, humidity, evaporation, and sunshine hours 

as predictors, and were evaluated in 20 Vietnamese provinces. In the second part of the project 

addressing diarrhoea forecasting, a Tree-structured Parzen Estimator from Optuna was used for 

improved hyperparameter optimisation for the highest performing deep learning models, as well as for 

univariate and multivariate Seasonal Autoregressive Integrated Moving Average (SARIMA) models. 

These were evaluated on the five provinces with the highest diarrhoea rates as a proxy for poor clean 

water and sanitation infrastructure. 

Results: Overall, LSTM-ATT had the lowest errors for dengue fever predictions, with average place-

rankings of 1.60 and 1.95 for root mean square error (RMSE) and mean absolute error (MAE) based 

scoring. Mean absolute percentage errors (MAPEs) of 38.4% and above were reported. Errors increased 

for most, but not all provinces when forecasting multiple months ahead. LSTM-ATT also displayed the 

lowest MAE-based ranking for diarrhoea forecasting (2.2), with MAPEs of as low as 8.43% for one-

month ahead predictions and 10.8% for three-month ahead predictions. CNN models displayed strong 

performance, too, with the lowest RMSE-based ranking of 2.2. SARIMA models were generally worse, 

but occasionally outperformed deep learning models, and identified significant lagged associations 

between diarrhoea rates and influenza rates, minimum absolute temperature, total rainfall, and sunshine 

hours. 

Conclusions: After analysing a selection of climate factor-based machine learning models, LSTM-ATT 

displayed the highest performance in forecasting dengue fever, and it performed similarly to CNNs in 

forecasting diarrhoea rates. While dengue fever models had high MAPEs, these were inflated due to the 

presence of observed rates of zero for many months. To the best of our knowledge, this is the first study 

to present long-term climate-based diarrhoea forecasting models, and the first example of prediction 

models for long-term diarrhoea forecasting in Vietnam. Overall, deep learning models show strong 

potential for the development of early-warning systems for infectious disease outbreaks in Vietnam.  
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1. Introduction 
 

1.1 Vietnam: Geography, Climate, and Disease Susceptibility 

 

Vietnam is a climatically diverse country due to large national variations in latitude, altitude, 

and susceptibility to coastal weather and flooding effects. As such, susceptibility to infectious 

diseases and the specific effects of weather on incidence rates may vary between provinces. 

The Southeast Asian country stretches across 15 degrees of latitude, with 3,260km of mainland 

coastline and thousands of islands (Boateng, 2012). It shares borders with the East Sea, China, 

Laos, and Cambodia. Vietnam is separated into three main regions—northern, central, and 

southern Vietnam—with further divisions into seven subregions: the Northwest, the Northeast, 

the Red River Delta, the North Central Coast, the South Central Coast, the Central Highlands, 

the Southeast, and the Mekong River Delta. Throughout these regions are 63 provinces, made 

up of 58 true provinces and 5 municipalities which hold equal administrative level 

(International Organization for Standardization, 2020). Over three quarters of the country is  

made up of hilly terrain from 100–1000m, with mountains in the North reaching 3,143m in 

height (Socialist Republic of Viet Nam, 2010). However, over 70% is at an altitude under 

500m. A quarter is made up of plains, primarily the Red River Delta in the north and the 

Mekong river delta in the South. With regards to weather patterns, the North has a subtropical 

climate with four standard seasons, whereas the South has a tropical climate with a wet season 

and a dry season. The entire country experiences high rainfall, temperatures, and humidity. 

However, the Southern provinces are hotter, rainfall is higher in the mountainous provinces 

(e.g., the Northwest, Northeast, and Central Highlands), and the central coastal provinces 

experience frequent hurricanes and storms (FAO, 2011).  
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Vietnam is significantly vulnerable to extreme weather events, climate change, and climate-

sensitive infectious diseases. Over 74% of people in Vietnam are impacted by climate 

vulnerability. The poor and those living near coastal regions such as the Mekong River Delta 

are particularly vulnerable (UNICEF, 2018). The high risk associated with islands and coastal 

regions is partially due to rising sea levels, which have elevated by over 20cm since the late 

1950s (Institute of Strategy and Policy on Natural Resources and Environment, 2009). 

Moreover, extreme weather events can damage healthcare infrastructure and limit the 

availability of treatment for infectious diseases in Vietnam. Heavy rainfall and floods can wash 

contaminants into drinking water, leading to increased diarrhoea rates, or create breeding 

grounds for mosquitoes, causing dengue fever (DF) epidemics. At the other end of the 

spectrum, droughts can cause concentration of pathogens in water sources leading to increased 

cases of diarrhoeal diseases. For the Intergovernmental Panel on Climate Change’s 

Representative Concentration Pathway 4.5 (RCP4.5), more frequent severe typhoons and 

droughts, longer monsoon seasons, and a sea level rise of 55cm are projected by the end of the 

21st century in Vietnam. Temperatures are forecast to rise by approximately 2.2°C in Northern 

regions and 1.8°C in Southern regions, and annual rainfall by 5–15mm (Tuyet-Hanh et al., 

2018a). Additionally, longer summers, and winters shortened by 1–2 months, may be 

commonplace in the North (Socialist Republic of Viet Nam, 2010). These climate adaptations 

are projected to worsen the impact of DF, diarrhoea, and other communicable diseases in 

Vietnam (Tuyet-Hanh et al., 2018a). 
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1.2 Dengue Fever 

1.2.1 Aetiology & Burden 
 

DF is a mosquito-borne neglected tropical disease caused by infection with the dengue virus. 

The main vectors which spread DF are Aedes mosquitos—Ae. aegypti and, to a lesser extent, 

Ae. albopictus (Higa et al., 2010; Wilke et al., 2019). The dengue virus can be passed on from 

an infected person if a mosquito feeds on them, after which the virus replicates and spreads to 

tissues throughout the mosquito including the salivary glands through which transmission is 

possible (World Health Organisation, 2020). At 25–28°C, this extrinsic incubation period is 

between 8 and 12 days, though this is temperature dependent (Tjaden et al., 2013). Mosquitos 

remain virulent for life, and the virus can be transmitted through saliva when an infected 

mosquito bites a new human host. The World Health Organisation (2020) categorises infections 

as either dengue or severe dengue, though the former can progress to the latter. Dengue can be 

asymptomatic or present with severe flu-like symptoms including fever, severe headaches, 

body pains, nausea, and vomiting after an intrinsic incubation period of 4 to 10 days. Severe 

dengue is characterised by respiratory distress, organ failure, internal bleeding, and risk of 

death. There are currently no specific treatments for DF. One vaccine, Dengvaxia®, was 

approved in 2015 but comes with severe limitations and therefore limited utility; it is only 

recommended in use for persons 9–45 years old with a confirmed past case of DF (European 

Medicines Agency, 2020).  

 

DF represents a significant growing global health burden, with an estimated 390 million cases 

per year—294 million of which are asymptomatic. Asia is affected the most with ~70% of 

infections, while the Americas also represent a high risk zone (Bhatt et al., 2013). On average, 

81 thousand cases were reported annually in Vietnam between 1997 and 2016, indicating a 
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substantial public health risk. Climate change is predicted to lead to a more severe situation in 

Vietnam, due to temperatures throughout the country and particularly in the central regions 

warming to ranges favourable for DF transmission (Tuyet-Hanh et al., 2018a). 

 

 

1.2.2 The Dengue Virus 
 

The dengue virus is a single-stranded positive-sense RNA Flavivirus (Aguas et al., 2019). Four 

serotypes of the dengue virus are commonly referred to in the literature (Bharaj et al., 2008; 

Villabona-Arenas et al., 2014), with a putative fifth described as early as 2013 (Mustafa et al., 

2015; Normile, 2013). Dengue serotypes co-circulate in highly affected regions such as 

Vietnam, with the dominant serotype changing over time. This is proposed to contribute to the 

seasonal and multi-annual variability in infection dynamics. Infection with one serotype can 

lead to either cross-protection, where an individual gains immunity to other serotypes, or cross-

enhancement, where the individual is more likely to suffer from severe dengue and increased 

infectivity after heterologous infection (ten Bosch et al., 2016). Cross-enhancement is believed 

to be caused by antibody-dependent enhancement (ADE), a process by which secondary 

dengue infection leads to downregulation of antiviral processes and facilitation of viral uptake 

into cells (Halstead, 2014). The reality of secondary heterologous dengue infection is highly 

complex, with the degree of protective or enhancing effects dependent on the specific serotypes 

involved (Aguas et al., 2019). 
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1.2.3 Associations between Climate Factors and Dengue Fever 
 

Past works have investigated the relationships between DF and climate factors such as 

temperature and rainfall; an understanding of such research has utility in designing and 

interpreting effective forecasting models. Positive correlations between minimum temperature 

and DF have been found for 1–2 month lags (Colón-González et al., 2011; Lowe et al., 2018; 

Phung et al., 2015c; Wang et al., 2014), with negative correlations for the same month also 

being reported (Wang et al., 2014). At 0–2.5 month lags, positive correlations were also found 

with average temperature in most (Do et al., 2014; Lee et al., 2017b; Pham et al., 2011; Phuong 

et al., 2016) but not all (Tuyet-Hanh et al., 2018b) studies reviewed. Regarding rainfall, positive 

associations with DF are commonly reported for lag-times of 0–3 months (Do et al., 2014; Lee 

et al., 2017b; Lowe et al., 2018; Pham et al., 2011; Phung et al., 2015b; Phuong et al., 2016), 

though negative associations (Wang et al., 2014) and lack of association (Colón-González et 

al., 2011; Tuyet-Hanh et al., 2018b) are also reported. Therefore, temperature and rainfall 

appear to be strong candidates for predictors in DF forecasting models, in spite of the mixed 

results. 

 

While rainfall and temperature have been the focus of most analyses, humidity, evaporation, 

sunshine hours, wind speed, and El Niño events may also affect DF incidence. Relative and 

minimum humidity have been shown to be associated with DF for lags of 1–3 months (Phung 

et al., 2015b; Wang et al., 2014). Similarly, evaporation has been shown to be associated with 

DF during the same month (Tuyet-Hanh et al., 2018b). The impact of sunshine hours is unclear, 

with works in support of both positive (Tuyet-Hanh et al., 2018b) and negative correlations 

with DF (Pham et al., 2011). Lastly, wind speed (Wang et al., 2014) and El Niño events (Colón-
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González et al., 2011) have been shown to have inverse correlations with rates of DF in the 

same month.  

 

Risk mapping has highlighted provinces in Southern Vietnam as particularly high-risk for 

dengue incidence, while in the North, Hà Nội has been shown to experience notably higher 

incidence than proximal provinces (Bett et al., 2019). As such, many of the studies in Vietnam 

elucidating the effect of environmental variables on DF have focused on Hà Nội and the 

Southern provinces. The variation in relationships between climate and DF in Vietnam and 

further afield therefore may partially be explained by the difference in study locations 

 

 

1.2.4 Dengue Fever Prediction Models 
 

Statistical and machine learning models have previously been applied to the prediction of DF 

from climate factors, a selection of which are described here. In Cần Thơ, Vietnam, Phung et 

al. (2015b) compared DF prediction models, using temperature, humidity, and rainfall as 

climate variables. Multiple regression, Seasonal Autoregressive Integrated Moving Average 

(SARIMA), and Poisson distributed lag models were evaluated using mean absolute percentage 

error (MAPE), identifying the Poisson distributed lag model as the best overall predictor of 

disease with a MAPE of 9%. Bett and colleagues (2019) used Vietnamese land cover and 

altitude data in addition to climate data to develop a DF prediction model based on hierarchical 

spatial Bayesian statistics using integrated nested Laplace approximation. A Besag-York-

Mollie conditional autoregressive model was included, which accounted for the spatial effects 

of neighbouring provinces on case numbers. This led to the identification of minimum 
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temperature, rainfall, urban land cover, altitude, spatial conditional autoregression, and 

temporal autocorrelation as significant predictors of DF cases. Model validation was assessed 

using Theil’s coefficient of inequality, resulting in a value of 0.22. These studies validate the 

ability of meteorological factors to be practical predictors of DF in both statistical and machine 

learning approaches.  

 

Deep leaning models have also been applied to DF forecasting, while incorporating climate 

factors. Node2Vec graph embedding has been incorporated into Support Vector Machine 

(SVM), Least Absolute Shrinkage and Selection Operator (LASSO), and Artificial Neural 

Network (ANN) dengue forecast models in China by Liu et al. (2020). This was used to add 

population flow between dengue outbreak regions as interaction features, in addition to rainfall, 

lagged temperature, and lagged case count data from the previous four weeks. However, 

significant improvements in prediction were not observed from the addition of population flow 

when assessed by a hit rate metric for the prediction of high-risk areas. Moreover, Long Short-

Term Memory (LSTM) recurrent neural networks have recently been applied to the prediction 

of dengue fever cases from climate factors. Xu et al. (2020) investigated the prediction of DF 

cases in 20 Chinese cities using monthly case data and 9 climate variables (a selection of air 

pressure, water pressure, temperature, and rainfall measurements), reduced from 15 after 

filtering for low variance and high correlation to avoid overfitting. LSTM using transfer 

learning (LSTM-TL) was compared with LSTM, back-propagation neural network (BPNN), 

Generalised Additive Models, Support Vector Regression (SVR), and Gradient Boosting 

Machines. The LSTM and LSTM-TL models displayed lower RMSE values for most cities 

indicating improved predictive accuracy over the other models, with transfer learning rescuing 

poor predictions in low-incidence areas. Another study used LSTM to predict dengue cases 

using data from 2002 to 2012 in Kuala Lumpur (Pham et al., 2018). Their LSTM model utilised 
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a genetic algorithm technique for optimisation of node count, learning rate, regularisation, and 

batch size parameters. This model was compared with linear regression and decision tree 

models to assess DF prediction using daily rainfall, temperature, humidity, and windspeed, 

along with enhanced vegetation index values. LSTM had the highest performance in terms of 

mean absolute error and RMSE. While the models discussed here show reasonable 

performance on a case-by-case basis, the lack of a relative error metric such as MAPE means 

different studies cannot be directly compared. 

 

 

1.3 Diarrhoea 

1.3.1 Aetiology & Burden 
 

Diarrhoeal disease represents a significant burden of childhood malnutrition and mortality 

globally and in Vietnam. It is the fifth most common cause of death in children under 5 years 

of age, accounting for approximately 450 thousand deaths annually (Troeger et al., 2018). In 

Vietnam, an average of 724 thousand cases per year were reported between 1997 and 2016. 

Clinical diarrhoea is marked by three or more daily loose bowel movements, and can present 

as acute watery, acute bloody (dysentery), or persistent diarrhoea (≥14 days of illness). 

Diarrhoeal disease primarily originates from contaminated food and water, where human and 

animal faeces are a common source (World Health Organisation, 2017).  In Vietnam, paediatric 

diarrhoea is associated with families with low-income, an absence of piped water and toilets, 

household crowding, low maternal age, and poor education on sanitation (Anders et al., 2015; 

Nguyen et al., 2006). These factors are not equally weighted throughout the country—36% of 

households in the northern mountainous regions do not have access to clean water sources. 



14 

 

Here, ethnic minority children under five are 3.5 times more likely to die of preventable causes 

(UNICEF, 2018). Malnutrition is also a major risk-factor for diarrhoeal disease in children 

under five years old. Moreover, diarrhoea worsens this malnutrition which can lead to a 

positive feedback loop causing further bouts of diarrhoea in vulnerable children.  Oral 

rehydration solution is a cheap, effective treatment, and interventions promoting its use have 

had a significant impact on decreasing global mortality from diarrhoea (Troeger et al., 2018). 

Prevention measures include exclusive breastfeeding up to six months old, improved access to 

clean drinking water, improved sanitation education, and rotavirus vaccination (World Health 

Organisation, 2017). To address limited rotavirus uptake due to high cost and lack of 

availability, the Vietnamese state-owned company POLYVAC has developed affordable 

rotavirus vaccines for more equitable access (PATH, 2019). 

 

Diarrhoea due to intestinal infection is caused by a wide range of pathogens, which vary in 

prevalence by location and season. In the Global Enteric Multicenter Study, which investigated 

childhood diarrhoea in sub-Saharan Africa and South Asia, rotavirus, Cryptosporidium, 

enterogenic Escherichia coli producing heat-stable toxin, and Shigella were identified as the 

main pathogenic causes. Other pathogens were location-dependent, such as Aeromonas which 

was only found in Asia (Kotloff et al., 2013). In Vietnam, rotavirus has similarly been shown 

to be the most commonly identified pathogen in studies in the North (Isenbarger et al., 2001; 

Nguyen et al., 2004), in the South (Anders et al., 2015; Thompson et al., 2015a), and throughout 

the country (Huyen et al., 2018). Differences in other detected pathogens are obscured due to 

different pathogens being tested for in the aforementioned studies. However, norovirus was the 

second-most prevalent infection in the southern studies, and Campylobacter, Salmonella, 

Shigella, Bacteroides fragilis, and diarrheagenic E. coli were also prevalent in some of the 

listed studies. The seasonality of diarrhoeal disease in Vietnam varies by pathogen, with 
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rotavirus infections peaking in autumn and winter while bacterial infections show higher 

prevalence during the summer months (Nguyen et al., 2006). 

 

 

1.3.2 Associations between Climate Factors and Diarrhoea 
 

Various studies have investigated the relationships between climate factors and diarrhoea in 

Vietnam and other countries, though they are less prevalent than those examining DF. Increases 

in weekly river level have been shown to correlate with diarrhoea rates 0–1 week(s) ahead 

(Phung et al., 2015a; Thompson et al., 2015b). Previous works have found negative 

associations between average rainfall and diarrhoeal disease in the same month (Thompson et 

al., 2015b) or positive associations 0–2 months in advance (Wangdi and Clements, 2017). Total 

monthly rainfall has been found to correlate with diarrhoea negatively in the same month 

(Phung et al., 2018) and positively at a 1-month lag (Phung et al., 2015c). Additionally, periods 

of heavy rainfall, specifically, have been found to precede higher diarrhoea rates by 4–6 days 

(Phung et al., 2017). Multiple studies have found maximum temperature (Wangdi and 

Clements, 2017) or average temperature (Phung et al., 2018, 2015c) to be positively correlated 

with diarrhoea 0–2 months in advance. D’souza et al. (2008) found an overall negative 

correlation between average temperature and diarrhoea at a 1-month lag in three Australian 

cities, however this relationship differed across seasons in Brisbane. One study by Onozuka 

and Hashizume (2011) showed a non-linear relationship, with a 23.2% increase in paediatric 

infectious diarrhoea cases for every 1°C increase in temperature up to 13°C  and an 11.8% 

decrease for every 1°C increase after that threshold. Studies on relative humidity have been 

similarly dichotomous, showing negative correlations at 0–2-week lags (D’souza et al., 2008; 

Phung et al., 2015a; Thompson et al., 2015b) or positive correlations at 0–1 month lags (Phung 
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et al., 2018, 2015c). The relationships described here highlight climate factors as potential 

diarrhoea predictors. However, the differing findings within and outside of Vietnam suggest it 

may be important to select prediction factors and design models at the provincial level to 

account for these variations.  

 

 

1.3.3 Diarrhoea Prediction Models 
 

Previous ARIMA-based works have attempted to predict diarrhoeal disease rates from climate 

factors; a selection of these models is discussed below as well as their results where relative 

error scores were provided. Kam et al. (2010) examined SARIMA models, comparing 

univariate models with multivariate SARIMA with exogenous regressors (SARIMAX) models 

in the prediction of acute diarrhoea patient count in Seoul, South Korea. Exogenous variables 

were selected by significance during each step of walk-forward validation from patient data, 

holiday data, and a weather database of average temperature, minimum temperature, maximum 

temperature, temperature difference, precipitation, wind speed, humidity, and sunshine hours. 

Climate factors were not significant, however their inclusion reduced average MAPE from 

11% to 10%. A multivariate SARIMAX model was implemented by Ali et al. (2013) to forecast 

cholera-specific diarrhoea cases in Matlab, Bangladesh. Cholera incidence was significantly 

influenced by minimum temperature and surface sea temperature in the same month, and by 

surface sea temperature at a 2–month lag. Overall, given the MAPE of 10% obtained in Seoul, 

ARIMA-based models appear to show reasonably strong predictive accuracies in certain 

geographic regions. Additionally, climate factors are able to increase model performance.  
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A small number of other machine learning models have also been applied to the problem of 

diarrhoea prediction. Fang et al. (2020) compared a random forest model with ARIMA and 

ARIMAX models in forecasting diarrhoea incidence in Jiangsu Province in China. The random 

forest model used air pressure, rainfall, and relative humidity as climate factors, while the 

multivariate ARIMAX model used precipitation. The random forest model had the lowest 

MAPE of 21%, while the ARIMAX and ARIMA models had values of 28% and 29%, 

respectively. Sahai et al. (2020) developed a Self-Organising Map, an unsupervised neural 

network model, to predict diarrhoeal disease two to three weeks in advance in two cities in 

India, Pune and Nagpur. Minimum temperature, maximum temperature, and rainfall were used 

as climate parameters, resulting in correlation coefficients of 0.72 in both locations. Lastly, 

Abdullahi and Nitschke (2021) compared Convolutional Neural Network (CNN), LSTM, and 

SVM diarrhoea prediction models in nine South African provinces, using eight measures of 

temperature, precipitation, humidity, air pressure, evaporation, and windspeed as climate 

predictors. When using real-world data, CNN had the lowest overall RMSE scores, followed 

by LSTM then SVM. These experiments propose deep learning models as viable diarrhoea 

forecasting techniques. Moreover, they indicate a potential higher forecasting performance 

from deep learning models over traditional methods such as ARIMAX. 

 

 

1.4 Study Aims, Overview, and Contributions 

 

This project aimed to develop accurate prediction models for short-term (one month ahead) 

and long-term (three months ahead) DF and diarrhoea forecasting based on a diverse range of 

climate factors in Vietnam. In the national health sector’s climate change action plan, the 
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development of early warning systems for DF and diarrhoea was identified as a priority 

adaptation measure (Tuyet-Hanh et al., 2018a). The current lack of such systems represents a 

public health risk and an opportunity for impactful reduction in infectious disease morbidity 

and mortality in Vietnam. Therefore, a selection of machine learning models for infectious 

disease forecasting were developed using a dataset of 12 meteorological variables from 1997–

2016 in multiple provinces across Vietnam.  In the preliminary stages of the project, five 

traditional statistical and machine learning models (Poisson regression, extreme gradient 

boosting (XGBoost), SVR, linear kernel SVR (SVR-L), and SARIMA) were developed and 

compared with four deep learning models (CNN, LSTM, attention mechanism-enhanced 

LSTM (LSTM-ATT), and Transformer) in 20 provinces across Vietnam. For the second stage 

of the project, which focused on diarrhoea prediction models, automated hyperparameter 

optimisation was introduced. This allowed a more systematic approach, and a revisiting of 

traditional machine learning model following their poor relative performance in DF 

forecasting. As such, SARIMA and SARIMAX were included to examine their 

competitiveness with the highest performing models from section one—CNN, LSTM, and 

LSTM-ATT. Performance was evaluated on the five provinces with the highest median 

monthly diarrhoea rates, as a proxy for poor clean water and water infrastructure access.  

 

To the best of our knowledge, there have been no deep learning models published for the 

prediction of DF incidence based on climate factors. Similarly, we have not come across the 

use of climate-based LSTM-ATT models for DF or diarrhoea forecasting. This study appears 

to be the first in Vietnam to forecast long-term diarrhoea incidence, and the second to forecast 

long-term DF incidence (Colón-González et al., 2021). While we focused on diarrhoea 

prediction in provinces with limited access to clean water, we evaluated our DF models on a 
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much larger scale than most previous works in Vietnam—20 provinces throughout the 

northern, central, and southern regions of the country. 

 

 

2. Materials and Methods 
 

2.1 Data 

 

Disease case data were provided by the Vietnamese National Institute of Hygiene and 

Epidemiology (NIHE), which included monthly case and death numbers for DF, diarrhoea, and 

influenza at the provincial level. Disease incidence was provided rather than prevalence, 

meaning monthly disease case numbers refer only to new cases that were registered that month. 

Monthly climate data from 1997–2016 consisting of 12 measurements were provided by the 

Vietnam Institute of Meteorology, Hydrology and Climate Change (IMHEN): total rainfall 

(mm), highest daily rainfall (mm), number of rainy days, average temperature (°C), absolute 

minimum temperature (°C), absolute maximum temperature (°C), minimum average 

temperature (°C), maximum average temperature (°C), average and minimum humidity (%), 

total evaporation (mm), and total sunshine hours. Additionally, annual population data by 

province was sourced from the General Statistics Office of Vietnam (2021a) to calculate 

disease rates from case numbers.  

 

A small selection of statistical tests was applied to adequately describe the data and differences 

between regions of Vietnam. Normality was tested for each variable using the Shapiro-Wilk 

test implemented as scipy.stats.shapiro in SciPy (version 1.7.1) (Virtanen et al., 2020). Non-
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parametric tests were used to investigate differences between regions. The Kruskal-Wallis H-

test was used to test for differences in the population medians of disease and climate variables 

between north, south, and central Vietnam. This was achieved through the scipy.stats.kruskal 

function in SciPy (version 1.7.1) (Virtanen et al., 2020). Following this, post-hoc comparisons 

were conducted using Dunn’s test for pairwise comparisons of mean rank sums, as 

implemented in the scikit-posthocs (version 0.6.7) function, scikit_posthocs.posthoc_dunn 

(Terpilowski, 2019). Bonferroni correction was applied to significance thresholds to account 

for multiple hypothesis testing. Significance thresholds were divided by the total number of 

comparisons between regions, which was 54. 

 

 

2.2 Data Pre-processing 

 

The climate and disease datasets required pre-processing in the form of imputation, 

normalisation, and rates calculation. Firstly, both datasets contained some missing values (0–

1.36% per variable) in the form of NAs. The datasets also contained 0s, however these were 

assumed to be true values as there is no way to check, for example, if a given day had 0 cases 

of dengue fever or if the 0 represents missing data. Missing data was imputed as the minimum 

value for the same month from the past two years where possible. Missing values in the first 

12 months were imputed as 0, missing values in months 13–24 were imputed as the value for 

the same month from the previous year, and missing values in all other months were imputed 

as the minimum value of the same month from the previous two years. Secondly, the 

multivariate models (i.e., Poisson regression, SVR, SVR-L, XGBoost, SARIMAX, CNN, 

LSTM, LSTM-ATT, Transformer) required normalisation of the data to ensure all prediction 
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factors were equally weighted. To achieve this, data was scaled on the training set in the range 

of 0–1 using MinMaxScaler from Scikit-learn (version 0.24.2) (Pedregosa et al., 2011). Finally, 

disease rates per 100,000 population were calculated from the case data using annual 

population data to use for analysis and forecasting, in order to account for population size.  

 

 

2.3 Visualisation 

 

Data were visualised through geospatial mapping as well as standard plots. Geospatial mapping 

of median disease incidence was achieved through GeoPandas (version 0.9.0) (Jordahl et al., 

2020). After amending differences in province names, the project data was merged with a 

JSON file of Vietnam containing the coordinates and multipolygon data for each province. 

Next, the GeoSeries Coordinate Reference System was converted to Web Mercator to allow 

the addition of CARTO Positron basemaps (CARTO, 2019). The map plots were then 

generated by Matplotlib (version 3.4.3) (Hunter, 2007). Boxplots, bar plots, and time series 

plots were generated using Matplotlib (version 3.4.3) (Hunter, 2007) and Seaborn (version 

0.11.2) (Waskom, 2021). 
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2.4 Prediction Models 

2.4.1 Poisson Regression 

 

Poisson regression models are a type of generalised linear model (GLM). GLMs are a class of 

statistical models which allow the response variable to follow a non-normal distribution—a 

Poisson distribution is assumed in the case of Poisson regression. Poisson regression models 

also assume the log of the response variable mean can be modelled by linear independent 

variables, and is equal to its variance. In this study, the primary model parameter (λ) is the 

average monthly disease incidence. Modelling the log of λ avoids violating the equal variance 

assumption and allows values from negative to positive infinity. The Poisson regression can be 

represented mathematically as shown below, where 𝑥𝑡
𝑖 terms are covariates such as previous 

disease rates or climate factors and 𝛽𝑖 terms are coefficients (Roback and Legler, 2021, sec. 

4.2). 

log 𝜆𝑡 = ∑ 𝛽𝑖𝑥𝑡
𝑖

𝑛

𝑖=1

+ 𝛽0 

 

 

2.4.2 Extreme Gradient Boosting (XGBoost) 

 

XGBoost is an implementation of gradient boosting machines, models based on decision tree 

ensembles. These ensembles are built upon collections of classification and regression trees 

(CART). A single CART splits datapoints into leaves to determine, in the context of this paper, 

disease incidence based on previous rates or climate factors.  However, one CART is 
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insufficient to accurately predict disease incidence, so many trees are combined to form an 

ensemble where prediction weights of the different tree leaves are summed. XGBoost models 

are trained to minimise an objective function consisting of a loss function (mean squared error) 

and a regularisation function, which limits overfitting. The models are trained in an additive 

manner, where one level of the tree is optimised at a time. In practice, this means one leaf is 

split into two further leaves to see whether the objective function is improved, and many such 

splits are considered to determine the best possible split (Chen and Guestrin, 2016).  

 

 

2.4.3 Support Vector Regression (SVR) 

 

SVR is a regression-generalised implementation of SVMs. SVMs aim to categorise datapoints 

(vectors) by separating them with a hyperplane that maximises the distance (ε) between the 

resulting groups and the hyperplane. In many cases, however, a linear separator cannot 

accurately split up the datapoints into the respective groups, so inputs are mapped into higher-

dimensional space with a kernel function. This allows separation of the datapoints with 

hyperplanes in higher dimensions. SVR introduces an ε-tube around the regression line. 

Support vectors in SVR are the training datapoints outside of this tube. The optimisation 

function aims to find a regression function that keeps datapoints within the ε-threshold while 

keeping model complexity low. Importantly, datapoints are not penalised for errors less than ε 

(i.e., datapoints within the tube) (Awad and Khanna, 2015). SVR models can be implemented 

with several different kernel options. For this project, both radial basis and linear kernels were 

implemented in SVR and SVR-L models, respectively. 
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2.4.4 Seasonal Autoregressive Integrated Moving Average (SARIMA) Models 

 

SARIMA and SARIMAX are developments on the ARIMA time series model, which fits data 

based on an autoregressive (AR) term, a differencing term, and a moving average (MA) term. 

As the names suggest, SARIMA(X) models add seasonal terms. SARIMA parameters take the 

form [(p, d, q) (P, D, Q, s) (trend)], where (p, d, q) are the AR, differencing, and MA terms; (P, 

D, Q, s) are the seasonal AR, differencing, MA, and interval terms; and trend refers to an 

optional parameter to account for linear and/or continuous trends. The univariate SARIMA 

equation is below, where a time series 𝑦𝑡 has an error term 𝑢𝑡 and a 𝜂𝑡 term, in the case of 

measurement error or pure regression models when p and q are set to 0. In the second line of 

the equation, 𝜙𝑝(𝐿) and �̃�𝑃(𝐿𝑠) refer to the non-seasonal and seasonal autoregressive lag 

polynomials, respectively. Similarly, ∆𝑑 and ∆𝑠
𝐷𝑢𝑡 refer to the non-seasonal and seasonal 

differencing. On the right-hand side, 𝐴(𝑡) is the trend polynomial with intercept, 𝜃𝑞(𝐿) is the 

non-seasonal moving average lag polynomial and �̃�𝑄(𝐿𝑠) is the seasonal equivalent, and 𝜁𝑡 is 

the noise component (Perktold et al., 2021a, 2021b). 

𝑦𝑡 = 𝑢𝑡 + 𝜂𝑡 

𝜙𝑝(𝐿)�̃�𝑃(𝐿𝑠)∆𝑑∆𝑠
𝐷𝑢𝑡 = 𝐴(𝑡) + 𝜃𝑞(𝐿)�̃�𝑄(𝐿𝑠)𝜁𝑡 

 

SARIMAX models are multivariate due to the addition of exogenous (X) regressors, and take 

the form of regression models with SARIMA errors (Perktold et al., 2021a). This allows 

standard regression interpretation of covariate coefficients, which is not possible for the 

alternative model formation where covariates are simply added to the right-hand side of the 

SARIMA regression equation (Hyndman, 2010). The multivariate SARIMAX equation is 
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below, where there is an addition of 𝑛 exogenous regressor terms 𝑥𝑡
𝑖  with coefficients 𝛽𝑖 

(Perktold et al., 2021a, 2021b). Exogenous variables at different time lags are considered as 

separate terms.  

𝑦𝑡 = ∑ 𝛽𝑖𝑥𝑡
𝑖

𝑛

𝑖=1

+ 𝑢𝑡 

𝜙𝑝(𝐿)�̃�𝑃(𝐿𝑠)∆𝑑∆𝑠
𝐷𝑢𝑡 = 𝐴(𝑡) + 𝜃𝑞(𝐿)�̃�𝑄(𝐿𝑠)𝜁𝑡 

 

As the variables were scaled between 0 and 1 individually, the 𝛽𝑖 coefficient represents the 

mean unit change in 𝑦 (i.e., scaled disease incidence) for a 1-unit change in 𝑥𝑖 (i.e., scaled 

exogenous factor). To find the unscaled change, the values were inverse transformed using the 

inverse_transform function from Scikit-learn (version 0.24.2) MinMaxScaler (Pedregosa et al., 

2011). Finally, Bonferroni corrections were applied to adjust for multiple hypothesis testing. 

Significance thresholds were divided by the number of exogenous factors per province (6). 

Below, 𝛽�̂� is the mean unit change in disease incidence for a 1-unit change in an exogenous 

factor 𝑥�̂�; 𝑠𝑐𝑦. 𝑖𝑛𝑣𝑒𝑟𝑠𝑒_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 and 𝑠𝑐𝑥𝑖 . 𝑖𝑛𝑣𝑒𝑟𝑠𝑒_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 refer to the inverse scaling 

transformations for disease incidence and exogenous factor, respectively. 

𝛽�̂� =  
𝑠𝑐𝑦. 𝑖𝑛𝑣𝑒𝑟𝑠𝑒_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 (1)

𝑠𝑐𝑥𝑖 . 𝑖𝑛𝑣𝑒𝑟𝑠𝑒_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝛽𝑖)
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2.4.5 Convolutional Neural Network (CNN) 
 

CNNs are a form of ANNs, a class of machine learning models based on many interconnected 

processors activated by the environment or other neurons which ultimately accumulate in a 

desired outcome such as time series prediction. ANNs consist of an input layer of nodes 

(neurons), layers of hidden nodes, and an output layer of nodes. As a model learns, the weighted 

connections between nodes are updated in a linear or non-linear fashion to tune the activation 

of the network (Schmidhuber, 2015). CNNs reduce the parameters needed in ANNs, 

implementing a convolution operation to extract key features from the data before pooling to 

reduce complexity. This can be repeated with further convolutional and pooling layers before 

feeding the output into a fully connected layer, comparable to a regular ANN (Albawi et al., 

2017).  The CNN model used in this study was made up of a 1-dimensional (1D) convolution 

layer, a 1D max pooling layer, and one fully connected layer which outputs predictions for up 

to three months ahead (Figure 1). 
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Figure 1: Convolutional Neural Network architecture. The model consists of a 1-

dimensional (1D) convolution layer, a 1D, max pooling layer, and a final fully connected layer 

which results in predictions for disease incidence one, two, and three months ahead. 

 

 

2.4.6 Long Short-Term Memory (LSTM) 
 

LSTM models are a variant of recurrent neural networks (RNNs). In contrast to feedforward 

neural networks which can only pass on information in one direction, RNNs can also 

recurrently feed outputs back into the model as inputs. RNNs, however, struggle to learn longer 

sequences (Graves and Schmidhuber, 2005). The LSTM architecture overcomes this, as well 

as the common deep neural network problem of vanishing or exploding gradients caused by 

cumulative backpropagation error signals (Schmidhuber, 2015). LSTMs implement memory 

blocks in place of regular RNN hidden layers. These memory blocks have a cell state in 

addition to an input gate, a forget gate, and an output gate. The specific LSTM model used in 

this research consists of one memory block for each time point in the lookback window (Figure 
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2). In most cases, this is the previous three months. The results from the final hidden state are 

fed into a fully connected layer, which outputs predictions for the next three months.  

 

 

Figure 2: Long Short-Term Memory model architecture. For a lookback window of three 

months, the model is made up of three memory cells which ultimately feed through a fully 

connected layer to output predictions for the next three months. 

 

 

2.4.7 Attention Mechanism-enhanced Long Short-Term Memory (LSTM-ATT) 
 

Attention mechanisms in machine translation were initially developed to reduce the loss of 

information between sequence steps, by allowing models to focus on the most important parts 

of input data (Bahdanau et al., 2016). In LSTMs, this is achieved by generating outputs from 

each memory cell hidden state, and has been shown to improve model performance when 
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dealing with long sequences (Luong et al., 2015). An attention layer was added after the LSTM 

network, based on the global attention mechanism introduced by Luong et al. (Luong et al., 

2015) (Figure 3). In brief, the LSTM-ATT model takes a target hidden state from the top layer 

of the LSTM (i.e., the most recent month) and combines it with a context vector developed 

from the hidden states from all lookback window months.  This produces an attentional hidden 

state, which is then fed into a fully connected layer to output disease incidence predictions for 

the following three months. 

 

 

Figure 3: Long Short-Term Memory with Attention Mechanism model architecture. For 

a lookback window of three months, the model is made up of three memory cells. The hidden 

states of these cells are fed into an attention layer before the fully connected layer, which 

outputs predictions for the next three months. 
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2.4.8 Transformer 
 

The transformer is another deep learning model that exploits attention mechanisms, which was 

recently developed and shown to have strong performance in natural language processing 

(Vaswani et al., 2017). However, in contrast to the previously described models, it does not use 

recurrence or convolutions. The transformer model relies solely on attention and is able to 

process input data not in order, which allows improved parallelisation and reduced training 

times. Its model architecture includes encoder and decoder layers which contain multi-head 

self-attention mechanisms which flow into feed-forward networks (Figure 4) (Vaswani et al., 

2017).  

 

 

Figure 4: Transformer model architecture. Disease incidence and climate data is fed into 

the model as inputs, and disease incidence predictions for the following three months the final 

outputs Figure from Vaswani et al. (2017). 
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2.5 Hyperparameter Optimisation & Model Implementation 

2.5.1 Traditional Models 
 

Poisson regression, SVR, and SVR-L models were implemented in Scikit-learn (version 

0.24.2) (Pedregosa et al., 2011), while XGBoost models were implemented in the XGBoost 

Python package (version 1.5.0) (Chen and Guestrin, 2016). For the Poisson regression models, 

alpha was set to 1e-15, and max_iter to 1e6. For XGBoost models, default parameters were 

used. For SVR, the following parameters were used: kernel = “rbf”, C = 100, gamma = 

“auto”, epsilon = 0.1. For SVR-L, the following parameters were used:  kernel = “linear”, C 

= 100, gamma = “auto”.  

 

Univariate SARIMA and multivariate SARIMAX models were implemented using the 

SARIMAX model from the statsmodels (v0.12.2) Python library (Seabold and Perktold, 2010). 

Initially in the project, trial and error was used for hyperparameter selection for optimisation 

of the SARIMA DF models. Default parameters were used with the exception of 

enforce_stationarity and enforce_invertibility, which were set to false. Firstly, for each model, 

the time series was decomposed into seasonal, trend, and residual components which revealed 

the seasonality (m) and trend parameters. Secondly, the augmented Dickey-Fuller test was used 

to test if the data was stationary or required differencing (d/D). Thirdly, autocorrelation 

function (ACF) and partial ACF (PACF) plots were examined to help determine moving 

average (q/Q) and autoregressive (p/P) terms before and after differencing.  

 

For the second section of the project which focused on diarrhoeal disease forecasting, more 

systematic methods were used for hyperparameter selection where practical. In cases where it 
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was impractical, trial and error were used. Recursive feature selection was performed with a 

random forest regressor from Scikit-learn (version 0.24.2) (Pedregosa et al., 2011) to select 

two exogenous predictors. Exploratory analysis on the training data revealed a potential 

correlation between diarrhoea and influenza rates. To accommodate this, influenza rates were 

added to the climate dataset for recursive feature selection. The seasonal parameter (m) was set 

to 12 as the data showed clear annual seasonality. All other hyperparameters were chosen using 

Bayesian model-based optimisation. This was implemented with a Tree-structured Parzen 

Estimator (TPE) in Optuna (version 2.8.0) (Akiba et al., 2019) which aimed to minimise 

RMSE. Initially, exhaustive grid-search was attempted but was too computationally intensive 

to run in a practical amount of time, even in parallel on a high-performance computing cluster. 

ACF, PACF, and augmented Dickey-Fuller functions were still examined before and after 

differencing to manually check the fit of the parameters to the data. Similarly, the decomposed 

time series was examined to check seasonality and trend before and after differencing. 

 

 

2.5.2 Deep Learning Models 
 

Pytorch (version 1.8.1) (Paszke et al., 2019) and Scikit-learn (version 0.24.2) (Pedregosa et al., 

2011) were used to create and implement the deep learning models (CNN, LSTM, LSTM-ATT, 

Transformer). As for the SARIMA models, trial and error methods were used initially in the 

project for deep learning model DF predictions. This included experimenting with lookback 

windows of 1–18 months, resulting in an optimum window length of 3 months. Across all 

models, common hyperparameters were set as follows: batch size = 16, learning rate = 1e-3, 

dropout = 0.1, and epochs = 300. The CNN model had the following hyperparameters: number 

of layers = 1, number of filters = 100, and kernel sizes = (1, 3), (2, 3), and (3, 3). For the LSTM, 
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LSTM-ATT, and Transformer models, the numbers of layers and hidden sizes were tuned 

specifically for each province (Table S1). For both DF and diarrhoea predictions, the numbers 

of features used in the models were chosen using trial and error, and Adaptive Movement 

Estimation (Adam) was used as a gradient descent optimisation algorithm due to consistent 

performance and popularity described in the literature (Okewu et al., 2019). Likewise, two 

exogenous predictors and batch size = 16 were used for both disease predictions. For the 

diarrhoea forecasting models, the TPE in Optuna (version 2.8.0) (Akiba et al., 2019) selected 

province-specific values for lookback window, epochs, learning rates, hidden sizes, and 

numbers of layers for LSTM and LSTM-ATT models. Epochs, learning rates, number of 

filters, and dropout rates were similarly optimised for CNN models. The specific values for 

each province are available in the supplementary materials (Table S2). 

 

 

2.6 Performance Evaluation 

2.6.1 Forecasting Evaluation  
 

The 20 years of data was split into a 14 year training set (1997–2010), a three year validation 

set (2011–2013), and a three year testing set (2014-2016). The models were trained on the 

training data and evaluated on the validation set to optimise hyperparameters. Then, the tuned 

models were evaluated on the testing set to compare model performance using RMSE, while 

MAE and MAPE were also provided for further evaluation of the models. RMSE calculates 

the square root of the mean of the squared prediction errors between predicted and actual values 

(i.e., the standard deviation of the prediction errors). RMSE penalises larger errors greater than 
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smaller errors. Its formula is shown below, where 𝑦𝑖 is an actual value and �̂�𝑖 is the 

corresponding predicted value: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1

 

MAE, in contrast, weights errors equally by calculating the mean of the absolute differences 

between forecasted and actual values. The MAE formula is provided below, where 𝑦𝑖 is an 

actual value and �̂�𝑖 is the corresponding predicted value: 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

 

MAPE is defined as the mean of absolute errors between predicted and corresponding actual 

values divided by actual values. As MAPE is a relative error, model accuracy for different 

provinces can be directly compared. Where 𝑦𝑖 is an actual value and �̂�𝑖 is the corresponding 

predicted value, MAPE is calculated as follows: 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑦𝑖 − �̂�𝑖

𝑦𝑖
| ∗ 100%

𝑛

𝑖=1

 

 

 

2.6.2 Outbreak Evaluation 
 

The ability of LSTM-ATT to forecast disease outbreaks was assessed by calculating accuracy, 

precision, sensitivity, and specificity for each province’s test set. Outbreak months were 

defined as those with case numbers greater than one standard deviation above the average of 

disease incidence for that month. This method was based on previous works (Brady et al., 2015; 
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Cheng et al., 2020). Firstly, accuracy represents the proportion of predictions that were correct 

for a province. Secondly, precision is defined as the number of correctly predicted outbreaks 

relative to the total number of actual outbreaks. Thirdly, sensitivity represents the proportion 

of actual outbreaks that were correctly detected. Finally, specificity is defined as the proportion 

of normal (non-outbreak) months that were correctly detected. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 (𝑂𝑢𝑡𝑏𝑟𝑒𝑎𝑘 𝑜𝑟 𝑁𝑜𝑟𝑚𝑎𝑙 𝑀𝑜𝑛𝑡ℎ𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 (𝑂𝑢𝑡𝑏𝑟𝑒𝑎𝑘 𝑀𝑜𝑛𝑡ℎ𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑂𝑢𝑡𝑏𝑟𝑒𝑎𝑘 𝑀𝑜𝑛𝑡ℎ𝑠
 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 (𝑂𝑢𝑡𝑏𝑟𝑒𝑎𝑘 𝑀𝑜𝑛𝑡ℎ𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑂𝑢𝑡𝑏𝑟𝑒𝑎𝑘 𝑀𝑜𝑛𝑡ℎ𝑠
 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 (𝑁𝑜𝑟𝑚𝑎𝑙 𝑀𝑜𝑛𝑡ℎ𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜𝑟𝑚𝑎𝑙 𝑀𝑜𝑛𝑡ℎ𝑠
 

 

 

3. Results 
 

3.1 Descriptive and Statistical Analyses of Datasets 

 

There were 1,618,767 cases of DF in Vietnam between 1997 and 2016. DF cases were not 

normally distributed, nor were any of the other variables (p < 0.001, Table S3). During this 

time period, there was a median monthly DF rate of 0.702 per 100,000 population. Incidence 

and death rates of DF were highest in the months of June to October. Median incidence rates 

of dengue fever were highest in the Southern provinces (p < 0.001). Additionally, median 
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dengue fever rates were significantly higher in central Vietnam than in northern Vietnam (p < 

0.001) (Figure 5).  

 

 

Figure 5: Median monthly incidence rates of dengue fever and diarrhoea in Vietnam. 

Axes are shown in meters. Basemaps were obtained from CARTO (2019). 

 

The visual spread of DF rates per province suggests large differences between provinces. Some 

provinces experienced very few infections at all from 1997–2016, as shown by interquartile 

ranges (IQRs) hovering above zero (e.g., Bắc Cạn, Cao Bằng, Hà Giang). Others had either 

consistently higher median DF rates, such as in An Giang, Bình Phước, and Phú Yên, or a 

larger spread of IQR values covering rates from zero to the hundreds, as seen in Kon Tum, 

Quảng Bình, and Quảng Trị. However, there were consistently many outliers plotted, indicating 
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data points outside 1.5x the IQR, representing the presence of outbreak-like spikes in cases 

relative to normal rates (Figure 6). 

 

 

Figure 6: Distribution of dengue fever incidence rates per province in Vietnam. Box and 

whisker plots are drawn for 55 of Vietnam’s 63 provinces, where boxes indicate interquartile 

ranges and points outside 1.5 times the IQR are marked as outliers.  

 

There were 14,476,100 cases of diarrhoea between 1997 and 2016, with a median monthly 

diarrhoea rate of 97.8 cases per 100,000 population. The highest median rates of diarrhoea were 

mostly in the mountainous provinces—the upper northern provinces (e.g., Lào Cai, Điện Biên, 

and Cao Bằng) and Kon Tum in the Central Highlands—along with Thái Bình in the Red River 

Delta (Figure 1). Diarrhoea rates were significantly higher in the North than in southern or 

central Vietnam (p < 0.001). There were fewer outliers plotted in comparison to DF, though 

they are still present for many provinces showing outbreak-like spikes. In contrast to DF, all 

provinces had IQRs above zero, suggesting a more constant presence of case-registered 

diarrhoeal disease in Vietnam (Figure 7). This is supported by the data, as there were only 288 
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months throughout all provinces without diarrhoea cases registered, as opposed to 4277 for 

DF.  

 

 

Figure 7: Distribution of diarrhoea incidence rates per province in Vietnam. Box and 

whisker plots are drawn for 55 of Vietnam’s 63 provinces, where boxes indicate interquartile 

ranges and points outside 1.5 times the IQR are marked as outliers.  

 

Absolute temperatures in Vietnam ranged between -4.2°C to 41.1°C in the period of 1997–

2016, with a median average temperature of 26.0°C throughout the country (Table 1). The 

median average temperature significantly increased while moving down the regions, from 

23.7°C in the North, to 26.5°C  in central Vietnam, to 27.4°C  in the South (p < 0.001). The 

number of rainy days ranged greatly from 0 to 31 days, which was consistent throughout the 

northern, central, and southern regions. Median values for monthly total rainfall were highest 

in the South (137mm), followed by the central region (101.0mm), and then the North 

(98.0mm). However, these differences were not significant (p > 0.05). Average humidity 

ranged from 50.0–99.0%, and median values were marginally higher in the North at 84.0% 
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compared to 83% in central (p < 0.05) and southern Vietnam (p < 0.001). In contrast, median 

total evaporation rose from 67.3mm to 82.0mm to 84.2mm moving from northern to central to 

southern Vietnam, with significant differences between each region (p < 0.001). Similarly, the 

median number of monthly sunshine hours also increased moving southwards down the 

regions, from 130.3 to 172.7 to 203 (p < 0.001). Throughout the country, the number of 

sunshine hours varied from 0 to 321.1 per month. Detailed statistical results are available in 

the supplementary materials for Kruskal-Wallis (Table S4) and Dunn tests (Table S5). 

  

Table 1: Climate data. Provided by the Vietnam Institute of Meteorology, Hydrology and 

Climate Change (IMHEN).  All variables relate to monthly measurements. S.D. = standard 

deviation, IQR = interquartile range. 

Climate Factor Mean Median S.D. Min IQR Max 

Average temperature (°C) 24.6 26.0 4.1 3.8 22.1 – 27.7 31.8 

Maximum average temperature (°C) 29.1 30.5 4.4 5.7 26.7 – 32.3 38.2 

Minimum average temperature (°C) 21.8 23.1 4.1 2.6 19.3 – 24.9 28.5 

Absolute maximum temperature (°C) 33.0 33.4 3.5 13.5 31.2 – 35.4 41.1 

Absolute minimum temperature (°C) 18.5 20.3 5.4 -4.2 15.0 – 23.0 26.7 

Total rainfall (mm) 160.8 111.5 177.3 0.0 30.9 – 238.0 3207.0 

Highest daily rainfall (mm) 47.2 37.0 48.9 0.0 14 – 64 993.0 

Number of rainy days 10.4 10.0 8.1 0.0 3.0 – 16.8 31.0 

Average humidity (%) 82.8 83.3 4.9 50.0 80.0 – 86.2 99.0 

Minimum humidity (%) 49.3 50.0 9.6 11.0 43.0 – 56.0 85.0 

Total Evaporation (mm) 79.4 73.5 31.7 1.0 58.1 – 95.9 245.7 

Total sunshine hours 159.1 160.7 65.5 0.0 115 – 206.0 321.1 
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3.2 Dengue Fever 

3.2.1 Predicting Dengue Fever One Month in Advance 
 

In general, the deep learning models outperformed the traditional models, as observed by a 

clear shift from green towards red in the colour-coded RMSE results (Table 2). Error scores 

were colour-coded to show the range of RMSE values for each province rather than colour-

coding them across all provinces, because RMSEs as a measure of model performance are only 

comparable where the observed DF rate is the same. The traditional models performed worse 

than LSTM-ATT in all provinces, LSTM in all but one province (Quảng Ngãi), CNN in all but 

three provinces (Hải Phòng, Quảng Ninh, and Nam Định), and the Transformer in all but three 

provinces (Hải Phòng, Nam Định, and Bình Thuận). MAEs were similarly higher overall in 

the traditional models compared to the deep learning models (Table S6). In the multivariate 

models, the climate factors selected by random forest regression were most commonly 

measures of rainfall and temperature, chosen 16 and 15 times, respectively. There were also 4 

uses of  sunshine hours, 3 uses of evaporation, and 2 uses of humidity (Table S7). 
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Table 2: Root mean square errors for all prediction models in 20 Vietnamese provinces. 

Values are colour-coded for each province separately from the lowest value (darker green) to 

the median value (yellow) to the highest value (darker red). LSTM = long short-term memory. 

LSTM-ATT = attention mechanism-enhanced LSTM. CNN = convolutional neural network. 

Poisson = Poisson regression. XGB = Extreme Gradient Boosting. SVR = Support Vector 

Regressor with Radial Basis Kernel. SVR-L = Support Vector Regressor with Linear Kernel. 

SARIMA = Seasonal Autoregressive Integrated Moving Average. 

Province 
Root Mean Square Error for Each Model 

LSTM LSTM-ATT CNN TF Poisson XGB SVR SVR-L SARIMA 

Hà Nội 7.999 6.630 9.180 11.301 17.162 13.382 16.689 16.878 18.144 

Hải Phòng 0.464 0.529 0.757 0.748 0.934 0.657 6.073 7.938 2.594 

Quảng Ninh 1.010 0.961 1.953 0.930 1.577 1.277 3.384 4.072 1.175 

Nam Định 0.783 0.797 0.974 1.008 0.939 1.156 1.454 1.578 0.933 

Thái Bình 0.627 0.597 0.598 0.661 0.688 0.738 0.781 0.878 0.676 

Quảng Nam 7.382 6.696 6.890 12.678 13.504 11.990 13.969 15.434 16.448 

Quảng Ngãi 9.288 8.080 8.874 8.861 11.113 9.096 27.721 37.677 10.181 

Phú Yên 9.187 9.544 9.766 12.544 19.278 16.209 19.329 20.562 20.628 

Ninh Thuận 5.064 3.959 5.140 8.743 17.260 24.833 20.274 12.441 9.027 

Bình Thuận 8.364 8.826 8.259 12.031 12.949 10.302 13.880 14.512 10.120 

Tây Ninh 5.123 3.854 6.538 6.500 7.350 9.395 7.213 9.450 6.600 

Bình Phước 6.577 7.466 9.063 9.649 14.796 12.574 17.746 17.507 21.731 

An Giang 5.699 3.907 3.860 5.461 9.502 8.672 7.777 7.954 10.504 

Tiền Giang 4.415 4.098 7.912 5.620 18.336 17.611 14.648 16.247 13.550 

Cần Thơ 3.119 2.228 3.997 4.866 8.689 6.595 18.503 27.518 9.349 

Trà Vinh 4.462 3.891 4.820 4.482 12.442 13.630 14.752 14.289 10.129 

Kiên Giang 2.460 2.976 4.448 3.892 16.070 16.809 16.093 16.455 5.079 

Sóc Trăng 6.192 5.887 3.725 4.389 12.671 13.908 12.227 11.946 42.093 

Bạc Liêu 3.429 2.652 2.379 2.891 12.324 11.841 10.035 9.584 23.812 

Cà Mau 4.490 4.110 5.499 9.043 14.720 20.489 15.279 15.974 17.736 

 

 

One-step Forecasting 

The results generated by the most competitive deep learning models—CNN, LSTM, and 

LSTM-ATT—were plotted to visualise their respective accuracies. The results from the 

transformer and traditional models were not graphed due to notably worse performance and to 

avoid overplotting. Predicted values were graphed against actual values for the test set covering 

January 2014 to December 2016. Plots are provided for six of the twenty provinces (Figure 8). 
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In the representative plots, all three models appear to perform well with LSTM-ATT 

predictions showing slightly stronger adherence to the observed incidence rates. There are 

some exceptions to this, such as the CNN model’s better coverage of the outbreak peaking at 

month 25 in Quảng Nam. 

 

 

Figure 8: One-month ahead dengue fever predictions for six provinces in Vietnam. 

Observation refers to the real rates of dengue fever incidence in the test set from 2014–2016. 

LSTM = Long Short-Term Memory, LSTM-ATT = attention mechanism-enhanced LSTM, 

CNN = Convolutional Neural Network. 

 

Error metrics were plotted for the deep learning models to provide a clearer picture of 

respective model performance (Figure 9).  In general, the error metrics confirm the differences 

observed in the plots. LSTM-ATT, LSTM, CNN, and Transformer had the lowest RMSE 

values for 10, 5, 4, and 1 province(s), respectively. Similarly, LSTM-ATT, LSTM, CNN, and 

Transformer had the lowest respective MAE values for 8, 5, 5, and 2 provinces. The attention 

mechanism conferred an overall improvement to the base LSTM model, with decreased 
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RMSEs in 14/20 provinces and decreased MAEs in 13/20 provinces. MAPEs were inflated by 

the presence of many low and zero values for observed rates. Even for the highest performing 

models, MAPE still had some extremely high values ranging from 38.4% in An Giang (LSTM-

ATT) to 3.90 x 10-16 in Kon Tum (CNN) (Table S8). 

 

 

Figure 9: Error metrics for 1-month dengue fever predictions in 20 provinces in Vietnam. 

RMSE = Root Mean Squared Error, MAE = Mean Absolute Error, LSTM = Long Short-Term 

Memory, LSTM-ATT = attention mechanism-enhanced LSTM, CNN = Convolutional Neural 

Network. 

 

All models were then ranked from 1 to 9 for each province, with lower numbers representing 

lower RMSE or MAE values. This allowed for the distributions of scores to be visualised in 

box and whisker plots, where mean rankings are shown as grey-outlined circles (Figure 10). 

Given the large number of evaluation provinces (20), this facilitated an easier comparison of 

the models. The LSTM-ATT model had an overall rank of first place, with mean place rankings 

of 1.60 for RMSE values and 1.95 for MAE values. The basic LSTM model came in second, 

with a mean RMSE-based ranking of 2.35 and a mean MAE-based ranking of 2.20, and the 
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CNN model came in third place on average, with a mean RMSE-based ranking of 3.10 and a 

mean MAE-based ranking of 2.70. In descending order, the subsequent models ranked as 

follows for both error metrics: transformer, XGBoost, Poisson regression, SARIMA, SVR, and 

SVR-L. As before, the attention mechanism appeared to improve the LSTM model 

performance. 

 

 

Figure 10: DF forecasting model rankings. Rankings are based on the relative scores for 

lowest RMSE or MAE in the prediction of dengue fever one month ahead. Box and whisker 

plots are shown, where grey-outlined dots indicate mean values. RMSE = root mean square 

error. MAE = mean absolute error. LSTM = long short-term memory. LSTM-ATT = attention 

mechanism-enhanced LSTM. CNN = convolutional neural network. Poisson = Poisson 

regression. XGB = Extreme Gradient Boosting. SVR = Support Vector Regressor with Radial 

Basis Kernel. SVR-L = Support Vector Regressor with Linear Kernel. SARIMA = Seasonal 

Autoregressive Integrated Moving Average. 

 

Outbreak Detection at a One Month Lag 

As the LSTM-ATT model had the best performance in previous results, its outbreak detection 

was assessed. LSTM-ATT detected all but two outbreak months (actual positives) in the test 

set—one in Thái Bình and one in Phú Yên (Figure 11, top). All outbreak months were detected 
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in Hà Nội, Quảng Nam, and Bình Phước, and there were only two false alarms raised—one in 

Hà Nội and one in Phú Yên. While there were no outbreaks in the other provinces to test the 

model on, LSTM-ATT also did not raise any false alarms. LSTM-ATT displayed high levels 

of precision, accuracy, sensitivity, and specificity in epidemic forecasting (Figure 11, bottom). 

There were high values for all performance metrics in the three provinces making up the 

majority of outbreak months—Hà Nội, Quảng Nam, and Bình Phước. There were, however, 

lower precision and sensitivity values of 0.5 in Phú Yên where one of the two outbreak months 

were missed, and 0 in Thái Bình where the one outbreak month was missed. The ability of the 

LSTM-ATT model to correctly assign non-outbreak months, as assessed by specificity and 

accuracy, was consistently high across all provinces with most values being 1.0. For many of 

the provinces, however, there were no outbreaks or predicted outbreaks, resulting in undefined 

values for precision and sensitivity. 
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Figure 11: Dengue fever outbreak detection performance for the Attention Mechanism-

enhanced Long Short-Term Memory model. Numbers of actual outbreaks, correct outbreak 

predictions (true positive) and incorrect outbreak predictions (false positive) for each province 

are shown (top). Additionally, prediction metrics (precision, accuracy, sensitivity, and 

specificity) for each province are displayed (bottom). If a province did not have any actual 

outbreaks in the evaluation period, the precision and sensitivity are not available.  

 

 

3.2.2 Predicting Dengue Fever Multiple Months in Advance 
 

Multi-step Forecasting 

Following the methods used for predicting DF one month in advance, the performance of 

LSTM-ATT at forecasting DF two to three months ahead was tested (Figure 12). k-step 

notation is used, where k refers to the number of months in advance that the prediction is made. 

All k-step predictions were plotted for Hà Nội, Ninh Thuận, and Bình Phước to give a 

representative overview of the differences. In Hà Nội, the main visual difference between 
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predictions is in the outbreak peaking around month 21. The 2-month ahead prediction 

underestimated this the most, but the 3-month ahead prediction was slightly better. In the other 

two provinces there appears to be a progressive worsening as k increases. In Ninh Thuận, 2- 

and 3-month ahead predictions forecasted the month 23 outbreak peak to occur in later months, 

and in Bình Phước there is a clear false spike in cases at month 6 for the k=3 prediction (Figure 

12).  

 

 

Figure 12: Multi-month ahead dengue fever predictions by the Attention Mechanism-

enhanced Long Short-Term Memory model. Observation refers to the real rates of dengue 

fever incidence in the test set from 2014–2016. Predictions are plotted 1, 2, and 3 months in 

advance. 

 

The error metrics mostly support the visual insights from Figure 12, with a slight decrease in 

RMSE between 2- and 3-month ahead predictions in Hà Nội and progressive increases from 

1–3 month ahead predictions in Ninh Thuận and Bình Phước (Figure 13). In general, RMSE 

and MAE increased as k increased. For many provinces, however, the predictive performance 

was relatively consistent across 1–3 month ahead predictions (e.g., in Quảng Ngãi, Tây Ninh, 

and Bạc Liêu). Interestingly, in Bình Thuận, RMSE and MAE were lower for multi-step 

predictions. 
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Figure 13: Multi-step prediction performance of the Attention mechanism-enhanced 

Long Short-Term Memory model for all provinces. RMSE and MAE values are provided 

as error metrics for all 20 provinces for predictions up to three months (steps) in advance. 

RMSE = root mean square error. MAE = mean absolute error. 

 

Multi-step Outbreak Detection 

As with one month ahead forecasting, outbreak detection was tested 2–3 months in advance. 

In line with the multi-step forecasting, the performance generally decreased as the number of 

months ahead increased (Figure 14). This was seen in Hà Nội, Quảng Nam, and Bình Phước. 

However, precision remained high at two months in these three provinces, meaning that the 

LSTM-ATT models missed very few outbreak months. Additionally, the specificity and 

accuracy in provinces with no outbreaks was consistently high, as it was for predictions one 

month ahead. 
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Figure 14: Multi-month dengue fever outbreak detection performance for the Attention 

Mechanism-enhanced Long Short-Term Memory model. Prediction metrics (precision, 

accuracy, sensitivity, and specificity) for each province are displayed. If a province did not 

have any actual outbreaks in the evaluation period, the precision and sensitivity are not 

available.  

 

 

3.3 Diarrhoeal Disease 

3.3.1 Hyperparameter Optimisation 
 

SARIMA & SARIMAX 

Hyperparameters were optimised by TPE to minimise RMSE for SARIMA models for each 

province, coming to near-optimum values early on in the hundred trials. Four of the six 

provinces had some trials with RMSE values above 60,000, however these were uncommon. 

Hyperparameter importance varied by location, though for three of the five provinces the 
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seasonal moving average component (Q) was the first or second most important. Differencing 

(d) and trend (t) were relatively unimportant for all provinces, however seasonal differencing 

was the most important hyperparameter in Kon Tum. The other parameters occasionally had 

high importance values on a province-by-province basis (Figure 15). 

 

 

Figure 15: Relative hyperparameter importance values for SARIMA models. Importance 

values sum to one for each province, and indicate a hyperparameter’s influence on minimising 

root mean square error. 

 

Deep Learning Models 

The TPE settled towards a near-optimum RMSE for LSTM, LSTM-ATT, and CNN models 

relatively early in the 100 trials. There were large variations in objective (RMSE) values for all 

models, however these were much greater for the LSTM and LSTM-ATT models than for the 

CNNs. These observations were consistent throughout the provinces, and the optimisation 

histories from Cao Bằng are provided as a supplementary example (Figure  S1). 
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Learning rate was frequently a highly important hyperparameter in model optimisation, as was 

epochs, whereas hidden size and number of layers were commonly less important (Figure 16). 

As four hyperparameters were optimised for the CNNs as opposed to five for the other models, 

the relative values are not directly comparable. However, it can still be observed that the 

number of filters was relatively unimportant for RMSE minimisation in the CNN models 

compared to dropout rate. Additionally, lookback window appears to have been more important 

for the LSTM-ATT model than the standard LSTM model. 

 

 

Figure 16: Relative hyperparameter importance values for deep learning models. 

Importance values sum to one for each province, and indicate a hyperparameter’s influence on 

minimising root mean square error. Learning rate, epochs, lookback window, hidden size, and 

n_layers were optimised for Long Short-Term Memory (LSTM) and Attention mechanism-

enhanced LSTM (LSTM-ATT) models for 5 provinces. Learning rate, epochs, dropout rate, 

and number of filters were optimised for Convolutional Neural Network (CNN) models for 5 

provinces. 
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3.3.2 SARIMAX Associations 

 

Total rainfall, sunshine hours, minimum absolute temperature, and influenza were found to be 

significantly associated with diarrhoea rates (Table 4). A 1mm increase in total rainfall was 

correlated with a mean increase in diarrhoea rates per 100,000 population of 0.324 one month 

later in Thái Bình. In the same province, a 1-hour increase in total sunshine preceded a mean 

0.910-unit rise in diarrhoea rates per 100,000 population by one month. Minimum absolute 

temperature was associated with diarrhoea at a 1-month lag in Kon Tum, where an increase of 

1℃ corresponded to a rise of 18.3 diarrhoea cases per 100,000 population. Finally, a 1-unit 

increase in influenza rates per 100,000 population in Kon Tum was associated with a 0.0674-

unit increase in diarrhoea rates per 100,000 population one month later, and a 0.148-unit 

increase three months later. In contrast, the same rise in influenza rates correlated with a 0.162-

unit drop in diarrhoea rates per 100,000 population two months later in Điện Biên. 
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Table 4: Significant associations between climate factors and diarrhoea rates from the 

SARIMAX models. Full metrics are provided from the model results, which had all variables 

independently scaled from 0–1 using the Scikit-learn (version 0.24.2) MinMaxScaler 

(Pedregosa et al., 2011), in addition to the unscaled correlation coefficient. Significance 

thresholds were adjusted by Bonferroni adjustment for 6 comparisons per province (*: p < 0.05, 

**: p < 0.01). Min. Abs. Temperature = minimum absolute temperature., 𝛽𝑖 = scaled correlation 

coefficient, Std. Error = standard error, z = z-score, CI = confidence interval, 𝛽�̂� = unscaled 

correlation coefficient. 

Province Factor All Factors Scaled to [0, 1] Unscaled 

𝜷𝒊 Std. 

Error 

z P>|z| 95% CI 𝜷�̂� 

Điện Biên Influenza  

(Lag 2) 

-0.533 0.111 -4.818 0.000** (-0.75, -0.316) -0.162 

Thái Bình Total Rainfall  

(Lag 1) 

0.315 0.082 3.850 0.000** (0.155, 0.476) 0.324 

Thái Bình Sunshine 

Hours (Lag 1) 

0.268 0.088 3.041 0.002* (0.095, 0.440) 0.910 

Kon  

Tum 

Min. Abs. 

Temperature 

(Lag 1) 

0.558 0.090 6.212 0.000** (0.382, 0.743) 18.3 

Kon  

Tum 

Influenza  

(Lag 1) 

0.242 0.086 2.797 0.005* (0.072, 0.411) 0.0674 

Kon  

Tum 

Influenza  

(Lag 3) 

0.531 0.108 4.892 0.000** (0.318, 0.743) 0.148 

 

No other province-specific climate factors used in the SARIMAX models were found to have 

significant associations with diarrhoea at 1–3 month lags. As there were 1–3 month lags of two 

climate variables (or influenza rates) for each model, some of the significant associations 

presented here were not replicated in other provinces. For all models, influenza rates and 

measures of temperature were the most commonly selected predictors by random forest 

regression, with 3 uses each. Measures of rainfall and sunshine hours were each selected twice 

(Table S9).  
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3.3.3 Forecasting & Outbreak Detection 
 

Forecasting One Month in Advance 

In most provinces, the univariate SARIMA results appear to follow the observed diarrhoea 

rates better than the multivariate SARIMAX models (Figure 17). This is seen clearly in 

Điện Biên, where the multivariate model consistently underestimated diarrhoea rates, and in 

Kon Tum where there were large underestimates around months 0, 12, and 26. However, the 

SARIMAX model appears to perform slightly better in Lào Cai, where the addition of 

exogenous factors attenuates the false spike in cases near month 30. At month 5, there is a clear 

diarrhoea outbreak which is mostly missed by both models.  

 

 

Figure 17: One-month ahead SARIMA and SARIMAX diarrhoea predictions for five 

provinces in Vietnam. Observation refers to the real rates of dengue fever incidence in the test 

set from 2014–2016. SARIMAX was not plotted for Thái Bình due to high inaccuracy 

obscuring the SARIMA results. SARIMA = Seasonal Autoregressive Integrated Moving 

Average. SARIMAX = SARIMA with exogenous regressors.  
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The error metrics confirm the higher performance of the SARIMA models, with the SARIMA 

models generally outperforming the SARIMAX models by RMSE, MAE, and MAPE metrics. 

This observation is reversed in Lào Cai, however, and the error scores are similar in Cao Bằng 

(Table 5). In Thái Bình, the SARIMAX RMSE was exceptionally high at 1081. Across the 

provinces, the SARIMA and SARIMAX performed best in Cao Bằng with MAPEs of 13.1% 

and 15.7%, respectively. The SARIMA model also performed well in Kon Tum, with an MAPE 

of 18.4%. The worst provinces were Điện Biên for SARIMA and Kon Tum for SARIMAX, 

where MAPEs of 284% and 6274% were observed. This, however, was impacted by the 

observed rate dropping to zero in Điện Biên at the last month of the test set. 
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Table 5: One-month ahead diarrhoea prediction performance metrics. Values are colour-

coded for each province separately from the lowest value (darker green) to the median value 

(yellow) to the highest value (darker red). SARIMA = Seasonal Autoregressive Integrated 

Moving Average. SARIMAX = SARIMA with exogenous regressors. LSTM = long short-term 

memory. LSTM-ATT = attention mechanism-enhanced LSTM. CNN = convolutional neural 

network. 

Province 
Root Mean Square Error for Each Model 

SARIMA SARIMAX LSTM LSTM-ATT CNN 

Điện Biên 46.909 59.868 54.352 56.641 53.333 

Thái Bình 37.273 1081.488 42.762 31.876 46.062 

Lào Cai 131.215 118.172 114.680 109.585 112.034 

Kon Tum 48.407 62.739 74.909 53.200 47.291 

Cao Bằng 29.141 32.867 17.532 25.354 18.759 

Province 
Mean Absolute Error for Each Model 

SARIMA SARIMAX LSTM LSTM-ATT CNN 

Điện Biên 32.832 46.937 32.265 42.232 42.966 

Thái Bình 26.831 734.728 33.563 23.717 33.953 

Lào Cai 69.251 55.809 62.533 45.047 54.457 

Kon Tum 37.338 48.358 61.846 39.222 36.908 

Cao Bằng 22.948 26.285 14.207 20.163 13.649 

Province 
Mean Absolute Percentage Error for Each Model (%) 

SARIMA SARIMAX LSTM LSTM-ATT CNN 

Điện Biên 284.037 355.184 364.378 407.484 410.412 

Thái Bình 9.420 218.909 11.452 8.434 12.504 

Lào Cai 51.305 37.769 48.824 29.330 40.419 

Kon Tum 18.391 6273.855 25.020 19.890 18.974 

Cao Bằng 13.100 15.717 8.554 11.949 8.631 

 

Results from the deep learning models were plotted together, separate from the SARIMA(X) 

models to avoid overplotting (Figure 18). In most of the plots, the deep learning models adhere 

closely to the line of observed diarrhoea rates. There are some visible differences between the 

deep learning models, such as a closer adherence by the LSTM model in Điện Biên, a large 

underestimation of rates by the LSTM model in Kon Tum, and an overshot of estimated rates 

around month 5 in Cao Bằng by the LSTM-ATT model. As with the SARIMA(X) models in 

Figure 17, the deep learning models mostly missed the large spike in diarrhoea rates at month 

5 in Lào Cai.  
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Figure 18: One-month ahead deep learning model diarrhoea predictions for five 

provinces in Vietnam. Observation refers to the real rates of dengue fever incidence in the test 

set from 2014–2016. LSTM = Long Short-Term Memory, LSTM-ATT = attention mechanism-

enhanced LSTM, CNN = Convolutional Neural Network. 

 

Considering all machine learning models together, LSTM-ATT displayed the highest 

performance in the most provinces, with the lowest RMSE, MAE, and MAPE values in both 

Thái Bình and Lào Cai (Figure 19). The CNN model had the lowest RMSE and MAE in Kon 

Tum, though the SARIMA model had a slightly lower MAPE. In Cao Bằng, LSTM had the 

lowest RMSE and MAPE while the CNN had a lower MAE. Despite this, the CNN model did 

show consistently strong forecasting performance. Across the entire selection of models, the 

province with the lowest relative error score was Thái Bình (LSTM-ATT MAPE: 8.43%), 

followed by Cao Bằng (LSTM MAPE: 8.55%), Lào Cai (SARIMA MAPE: 18.4%), Kon Tum 

(LSTM-ATT MAPE: 29.3%), and Điện Biên (SARIMA MAPE: 284%). 
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Figure 19: One-month ahead prediction performance metrics for all diarrhoea prediction 

models. RMSE and MAE values are provided as error metrics for predictions up to three 

months in advance. The plots were capped at 150 and 100, however the SARIMAX Thái Bình 

errors are greater than this limit. RMSE = root mean square error. MAE = mean absolute error. 

SARIMA = Seasonal Autoregressive Integrated Moving Average. SARIMAX = SARIMA 

with exogenous regressors. LSTM = long short-term memory. LSTM-ATT = attention 

mechanism-enhanced LSTM. CNN = convolutional neural network. 

 

Subsequently, the models were ranked based on RMSE and MAE values (Figure 20). For 

RMSE-based scoring, CNN placed first with a mean ranking of 2.2, which was followed 

closely by LSTM-ATT with a mean ranking of 2.4. This was followed by SARIMA, LSTM, 

and SARIMAX with respective mean rankings of 2.8, 3.0, and 4.6. For MAE-based scoring, 

the situation was reversed—LSTM-ATT had the lowest mean ranking of 2.2 followed closely 

by CNN with 2.4. LSTM and SARIMA tied with mean rankings of 3.0, and SARIMAX came 

last again with a mean ranking of 4.4. 
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Figure 20: Diarrhoea forecasting model rankings. Rankings are based on the relative scores 

for lowest root mean square error in the prediction of dengue fever one month ahead. Box and 

whisker plots are shown, where grey-outlined dots indicate mean values. SARIMA = Seasonal 

Autoregressive Integrated Moving Average. SARIMAX = SARIMA with exogenous 

regressors. LSTM = long short-term memory. LSTM-ATT = attention mechanism-enhanced 

LSTM. CNN = convolutional neural network.  

 

Outbreak Detection at a One Month Lag 

Due to the LSTM-ATT model having the lowest MAE-based ranking, the lowest RMSE values 

in the most provinces compared to other models (2/5 provinces), and strong performance in DF 

forecasting, it was selected to move forward with outbreak detection. As with DF, outbreak 

months were defined as one standard deviation from the monthly mean of diarrhoea rates for a 

given province. There was only one outbreak month in the test set, which occurred in Lào Cai 

(Figure 21). The LSTM-ATT had a delayed forecast for this event, and predicted a false 

positive the following month. This resulted in precision and sensitivity scores of zero for Lào 

Cai. It also meant there were two incorrect predictions for true normal months, resulting in an 

accuracy of 0.944 and a specificity of 0.971. For the other four months, there were no outbreaks 

or predicted outbreaks for precision and sensitivity calculations, resulting in undefined values. 

LSTM-ATT correctly categorised all (non-outbreak) months for Điện Biên, Thái Bình, Kon 

Tum, and Cao Bằng, resulting in accuracy and specificity scores of 1.00. 
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Figure 21: Diarrhoea outbreak detection performance for the Attention Mechanism-

enhanced Long Short-Term Memory model. Numbers of actual outbreaks, correct outbreak 

predictions (true positive) and incorrect outbreak predictions (false positive) for each province 

are shown (left). Additionally, prediction metrics (precision, accuracy, sensitivity, and 

specificity) for each province are displayed (right). If a province did not have any actual 

outbreaks in the evaluation period, the precision and sensitivity are not available. 

 

Multi-step Forecasting 

In general, the forecasting worsened when projecting diarrhoea rates more months in advance. 

This was particularly noticeable in Kon Tum and Cao Bằng, where false spikes in predicted 

cases worsened as forecast lag increased. For example, this occurred around months 1 and 13 

in Kon Tum, and around months 5–9 in Cao Bằng. However, the lines of predicted incidence 

are highly similar in Thái Bình and Lào Cai across all forecast lags (Figure 22). 
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Figure 22: Multi-month ahead diarrhoea predictions by the Attention Mechanism-

enhanced Long Short-Term Memory model. Observation refers to the real rates of dengue 

fever incidence in the test set from 2014–2016. Predictions are plotted 1, 2, and 3 months in 

advance. 

 

The error metrics confirm a general worsening of predictive performance with increasing 

forecast lag, with some exceptions (Figure 23). These differences tended to be more 

pronounced in MAEs than RMSEs. RMSE increased as k increased for all provinces except 

Điện Biên, where 1-month predictions had the highest error. In Thái Bình, RMSE increased 

only slightly from 31.9 to 38.9, and MAPE from 8.43% to 10.8%, for 1–3 month ahead 

forecasts. In Lào Cai, RMSE performance was nearly identical across k values, ranging from 

109.6 to 110.3, while MAPE had a greater increase from 29.3% to 42.4%. Furthermore, in Kon 

Tum 2- and 3-month ahead performance was similar (RSME: 85.6–85.7) but worse than 1-

month projections (RMSE: 53.2). MAPEs ranged from 19.9–30.8%. Lastly, in Cao Bằng, 2-

month ahead predictions only had a slight increase in error metrics from 1-month ahead 

predictions, with RMSE increasing from 25.4 to 31.2 and MAPE from 11.9% to 13.5%. 
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Figure 23: Multi-month ahead diarrhoea prediction performance metrics for LSTM-

ATT. RMSE, MAE, and MAPE values are provided as error metrics for predictions up to three 

months in advance. The MAPE plot y-axis was capped at 1.0 (100%), though Điện Biên results 

exceed this. RMSE = root mean square error. MAE = mean absolute error. MAPE = mean 

absolute percentage error. 

 

Multi-step Outbreak Detection 

Accuracy and specificity remained high for the multi-step outbreak predictions (Figure 24). 

The only changes from 1–3 months ahead forecasts were in Kon Tum, where accuracy and 

specificity both dropped from 1.00 to 0.917 before rising to 0.972. As the true case numbers 

did not change, there was still only one outbreak month in Lào Cai and none in the other 

provinces resulting in undefined precision and sensitivity scores. Neither the 2- or 3-month 

ahead LSTM-ATT predictions correctly identified the outbreak in Lào Cai, resulting in 

precision and sensitivity scores of 0. 
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Figure 24: Multi-month diarrhoea outbreak detection performance for the Attention 

Mechanism-enhanced Long Short-Term Memory model. Prediction metrics (precision, 

accuracy, sensitivity, and specificity) for each province are displayed. If a province did not 

have any actual outbreaks in the evaluation period, the precision and sensitivity are not 

available.  

 

 

4. Discussion 
 

The first major section of this study examined the performance of various machine learning 

models on predicting DF incidence one to three month ahead in Vietnam, which was preceded 

by an analysis of the climate and disease datasets to provide context for the model results. 

Traditional and deep learning models were explored across 20 provinces for one-month ahead 

DF forecasts, where LSTM-ATT displayed the highest performance. Notably, the attention 

mechanism improved the results of the basic LSTM model in most provinces. As the results 

suggested it to be model with the strongest overall performance, LSTM-ATT was tested for 

one-month outbreak detection, as well as for 2–3 month ahead prediction and outbreak 

detection.  
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The second section of this study aimed to deliver an improved disease forecasting model, 

focusing on the prediction of diarrhoeal disease. LSTM-ATT, LSTM, and CNN were used due 

to their strong performance in section one. Additionally, SARIMA was included because of 

potential for improvement through optimisation of its many hyperparameters and the addition 

of exogenous regressors. TPE modelling from the Optuna Python library (Akiba et al., 2019) 

was implemented for hyperparameter optimisation as an improvement upon trial-and-error 

selection used for the DF models. SARIMA and SARIMAX models were included to check 

whether  TPE optimisation could develop models with performance competitive to the deep 

learning models. As before, forecasting and outbreak detection were examined at 1–3 month 

lags. 

 

Models were optimised on using RMSE, though evaluation metrics are also provided for MAE 

and MAPE. RMSE is potentially a more useful metric than MAE, as it attributes greater 

weights to larger errors. For disease forecasting, missing one large outbreak is arguably much 

worse than many having small inaccuracies such as predicting 62 cases per 100,000 instead of 

67. However, MAE is a more interpretable metric, so it was included to observe on average 

how many cases per 100,000 a prediction was off by. Lastly, MAPE was included as a relative 

metric to allow comparison between different provinces and with other studies. MAPE, 

however, has disadvantages when observed rates are small or zero. MAPE increases towards 

infinity as observed rates approach zero, and this can inflate MAPEs and falsely suggest poor 

model performance in the context of disease forecasting. This was seen in the DF predictions, 

where observed rates of zero and close to zero occurred regularly. 
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4.1 DF Forecasting 

4.1.1 Climate Factors as Predictors of DF 
 

Mosquito development and activity are affected by climate factors, which is part of the reason 

for the associations between climate factors and DF incidence. Recursive feature elimination 

selected two climate factors as predictors for each province, resulting in all variables except 

minimum relative humidity being used in at least one province. Therefore, measures of each 

weather descriptor—rainfall (16 uses), temperature (15 uses), sunshine hours (4 uses), 

evaporation (3 uses), and humidity (2 uses)—were important for prediction. Firstly, rainfall 

has previously been identified as a risk factor for DF outbreaks, as excess water can collect in 

various empty containers and create sites for mosquitos to breed in (Tuyet-Hanh et al., 2018a). 

In contrast, very heavy rain may wash out breeding grounds (Wang et al., 2014). Moreover, 

Barrera et al. (2011) found mosquito density to correlate with both high rainfall and DF 

incidence. Secondly, Ae. aegypti mosquitos have been shown to have increased rates of 

development as temperatures rise towards 30°C. However, very high temperatures appear 

detrimental, as development rates drop after 40°C (Eisen et al., 2014). Mosquitos may also bite 

more frequently with rising temperatures (Scott et al., 2000). When looking at the overall 

effects, dengue epidemic potential is predicted to rise as average temperature rises up to 29°C, 

though this temperature may decrease with higher diurnal temperature ranges. Additionally, in 

tropical regions where temperatures are near this threshold (e.g., Vietnam), lower diurnal 

temperature ranges result in a higher epidemic potential than high ranges (Liu-Helmersson et 

al., 2014). Lastly, while fewer studies have investigated the effects regarding sunshine hours 

and evaporation, high humidity levels have been shown to favour mosquito survival (Lega et 

al., 2017).  These associations could explain, in part, the usefulness of the climate factors from 
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our research in forecasting DF. Moreover, the deep learning models may have performed well 

because of their ability to process the complex, non-linear relationships. 

 

The length of lookback window used is supported by previous research into the time lags 

between altered weather conditions and DF incidence. A period of three months was used, 

which had lower error scores than other lengths from one to eighteen months. Delays between 

climate factors and DF incidence have been described as 0–3 months for rainfall (Do et al., 

2014; Lee et al., 2017b; Pham et al., 2011; Phung et al., 2015c; Phuong et al., 2016; Wang et 

al., 2014), 0–2.5 months for temperature (Colón-González et al., 2011; Do et al., 2014; Lee et 

al., 2017b; Lowe et al., 2018; Pham et al., 2011; Phung et al., 2015c; Phuong et al., 2016; Wang 

et al., 2014), 0 months for evaporation (Tuyet-Hanh et al., 2018b), and 0–3 months for humidity 

(Pham et al., 2011; Phung et al., 2015c; Phuong et al., 2016; Tuyet-Hanh et al., 2018b, p.; Wang 

et al., 2014). A three month period, therefore, appears to capture all relevant delayed effects 

caused by incubation periods, altered mosquito development and behaviour, or altered human 

behaviour. 

 

 

4.1.2 Forecasting DF Rates One Month in Advance 
 

LSTM-ATT displayed the highest performance in DF forecasting one month ahead, followed 

by LSTM and CNN in second and third place, respectively. The traditional statistical and 

machine learning models—Poisson Regression, SVR, SVR-L, XGBoost, and SARIMA—had 

higher error metrics than the four deep learning models in most provinces, with a small number 

of exceptions. There are many factors at play in infectious disease forecasting, including 
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extraction of the most relevant predictors; the complex, non-linear impact of climate factors on 

mosquitoes; the impact of climate factors on human behaviour; and the extrinsic and intrinsic 

incubation periods of the dengue virus. Deep learning models provide the advantages of 

extracting the most relevant predictors, remembering information across many time steps, and 

deciphering complex data patterns with minimal manual feature engineering necessary (Bengio 

et al., 2013; Schmidhuber, 2015). This could explain the higher performance observed for the 

deep learning models. 

 

In addition to predicting disease rates, the ability to predict outbreaks has the potential to be 

highly valuable for DF management. Therefore, as the LSTM-ATT model had the best 

performance in previous results, its outbreak detection was assessed. Based on methods from 

previous forecasting studies which defined outbreak thresholds as rates n standard deviations 

above the monthly mean of cases (Brady et al., 2015; Cheng et al., 2020), we set n=1. This 

allowed for the detection of smaller-scale outbreaks instead of only major ones. Incidence rates 

of DF vary greatly between provinces in Vietnam, so province-specific thresholds were chosen 

over single or fixed thresholds which have been implemented in other works (Cheng et al., 

2020; Hii et al., 2012).  

 

LSTM-ATT was able to detect almost all DF outbreak months, with the exception of one in 

Thái Bình and one in Phú Yên. Similarly, it correctly identified the vast majority of normal 

months, with only two false alarms raised. More outbreaks were observed in the central 

provinces than other regions, which was unanticipated—more were expected in the South due 

to hotter, sunnier conditions at low altitude. This could be partially due to local weather 

conditions favouring DF transmission, such as those in Quảng Nam which had the highest 
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number of outbreak months. From examining median climate metrics during the test set, Quảng 

Nam had the 2nd highest maximum daily rainfall, 5th highest number of rainy days, and 12th 

highest monthly rainfall out of the 55 provinces for which climate data was available. 

Moreover, the high temperatures in southern provinces may have been too high for optimal DF 

transmission (Eisen et al., 2014; Liu-Helmersson et al., 2014; Scott et al., 2000). Additionally, 

other factors may have affected the number of outbreaks. These could include higher 

availability of empty containers for water to pool in for mosquito breeding, lower use of 

mosquito nets and repellents, or different distributions of dengue virus serotypes causing more 

severe (and therefore registered) cases.  

 

Our findings showing the high performance of LSTM models in climate-based DF forecasting 

are supported by previous works. A study by Pham et al. (2018) in Kuala Lumpur, Malaysia, 

found an LSTM using a genetic algorithm for hyperparameter optimisation to outperform linear 

regression and decision tree models. More recently, Xu et al. (2020) compared LSTM to SVR, 

GAM, GBM, and BPNN models, finding LSTM to outperform the other techniques and 

transfer learning to decrease error rates in areas with low incidence of DF. Similarly, our LSTM 

models performed strongly compared to the other DF prediction models. The improved metrics 

achieved by the LSTM-ATT model suggest that attention mechanisms could improve LSTM 

models in other disease forecasting contexts. 

 

Finally, the Transformer model generally had much higher RMSE and MAE values than the 

other deep learning models. This was unanticipated given the strong performance compared to 

LSTM models in other contexts (Zeyer et al., 2019). Transformer models use self-attention 

mechanisms, which allows parallel processing of the data without it being in order. The poor 
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performance observed in this study could be due to suboptimal model development. 

Alternatively, the processing of out of order data could be negatively impacted by the 

seasonality of the data. 

 

 

4.1.3 Multi-step Forecasting 
 

LSTM-ATT was used for multi-step forecasting due to outperforming the other models in one-

step predictions. In general, the performance of LSTM-ATT decreased when forecasting 

incidence and outbreaks further in advance. There were some exceptions, such as in Bình 

Thuận where error rates decreased. A probabilistic superensemble of generalised linear mixed 

models developed by Colón-González et al. (2021) was able to forecast prospective DF case 

numbers up to six months in advance throughout Vietnam, with an average continuous rank 

probability score of 110 outperforming baseline and individual models at lead times of 1–3 

months. Outbreak detection was also assessed, with average accuracy and sensitivity scores of 

73% and 68% for outbreaks more than two standard deviations above the mean. Due to the 

different outbreak threshold and the results being averaged across 1–6 month lags, the results 

are not directly comparable with the results presented here. However, the cost-loss analysis 

presented in the study suggests that the superensemble model was accurate enough to provide 

relative value over using no forecast to mitigate DF outbreaks in the majority of provinces. 

Future work to benchmark the superensemble model against the models presented here may 

prove constructive, especially considering we have not come across any other long-term DF 

prediction models in Vietnam. 
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A few previous studies in Singapore have shown results from long-term DF forecasting models, 

though they are limited in number. Hii et al. (2012) used a Poisson multivariate regression 

model to predict DF outbreaks four months ahead in Singapore at a national level. The Receiver 

Operating Characteristics (ROC) area under the curve (AUC) was high at 0.98. However, the 

test period was only one year long and contained only one outbreak, which reduces the 

robustness of the assessment. A more recent national-scale study by Shi et al. (2016) predicted 

weekly DF incidence up to three months ahead using LASSO regression models. The models 

used climate factors in addition to mosquito surveillance data for prediction, resulting in MAPE 

values of 17–24% for forecasts 1–3 months in advance. Chen et al. (2018) also used LASSO 

regression, but at a residential level in contrast with the two previous studies. Spatiotemporal 

case data, building age, meteorological conditions, and Normalised Difference Vegetation 

Index were used to construct the model, and AUC values ranged from 0.88 to 0.76 for 1–12 

week forecasts. Due to the different reporting metrics, most of these studies are not directly 

comparable with our results. The MAPE values reported by Shi et al. (2016) were much lower, 

however they were reported at a national level. Therefore, it was less likely for the models to 

encounter months with zero observed cases of DF, inflating the MAPEs as occurred in our 

models.  

 

 

4.2 Diarrhoeal Disease 

4.2.1 Hyperparameter Optimisation 
 

The Optuna TPE found the seasonal moving average component (Q) to regularly be the most 

important hyperparameter for SARIMA optimisation. Forecast errors for the same month in 
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previous years may be valuable information because of the annual seasonality of diarrhoea 

incidence. Trend and differencing were observed to be relatively unimportant, which was 

somewhat anticipated. No trend was observed visually or by augmented Dickey-Fuller test in 

Thái Bình (p = 0.008), Lào Cai (p = 0.002), Kon Tum (p = 0.007), or Cao Bằng (p = 0.013), 

and the trend in Điện Biên was eliminated after one differencing (p = 4.36e-15). Therefore, 

only ranges of 0–1 were optimised for d, leaving little room for strong alterations to the time 

sequences compared to the larger ranges for other parameters. The optimised values matched 

those suggested by the augmented Dickey-Fuller test.  

 

Learning rate, and epochs to a lesser extent, were regularly highly important hyperparameters 

in tuning the deep learning models. Notably, lookback window was more important for LSTM-

ATT than LSTM. Adding the attention mechanism was intended to attenuate the loss of 

information between previous months, so the difference in lookback window suggests this 

could have occurred. Other studies examining hyperparameter importance have found some 

similar results with regards to learning rate. Bergstra and Bengio (2012) assessed relative 

hyperparameter importance for random search-based hyperparameter optimisation on neural 

network experiments on nine image classification tasks based on variations on MNIST, 

rectangles, and convex image datasets. Relative importance changed based on the dataset, but 

learning rate remained highly important throughout the tasks. Hidden units had low relevance 

for most tasks, but was the second most important hyperparameter for the rectangles task. In 

another study, learning rate was identified as the most important hyperparameter for the lenet 

supervised learning algorithm and the deep-autoencoder unsupervised model on the CIFAR10 

dataset (Jia et al., 2016). While these experiments were on image classification and not time 

series tasks, they appear relatively in line with the findings from the diarrhoea model 

optimisations.  
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4.2.2 Associations between Diarrhoea, Climate Factors, and Influenza 
 

Minimum Absolute Temperature 

Significant associations were found between several lagged climate factors and diarrhoea rates, 

including positive correlations with minimum absolute temperature. A 1°C increase in 

minimum absolute temperature was associated with a mean increase of 18.3 diarrhoea cases 

per 100,000 population one month later in Kon Tum (p < 0.001). This complements other 

studies which have found positive correlations between increased average temperature and 

diarrhoea 0–2 months ahead in Vietnam (Phung et al., 2018, 2015c) and in Kon Tum 

specifically (Lee et al., 2017a). While inverse and inverted-v correlations with average 

temperature have been described in Australia (D’souza et al., 2008) and Japan (Onozuka and 

Hashizume, 2011), respectively, this may be due to differences in geography, climate, and 

sanitation infrastructure.  

 

A meta-analysis of 26 studies by Carlton et al. (2016) found an overall positive correlation 

between ambient temperature and diarrhoea or bacterial diarrhoea, but not viral diarrhoea. This 

may help to explain the relatively small effect of minimum absolute temperature on diarrhoea 

rates, as viral pathogens represent the main burden of diarrhoeal disease in Vietnam. Bacterial 

diarrhoea, by extension, is less common (Anders et al., 2015; Nguyen et al., 2004; Thompson 

et al., 2015b). The survival of diarrhoeagenic pathogens such as rotavirus, E.coli, and 

Salmonella species in surface and ground waters has been shown to decrease with rising 

temperatures (Blaustein et al., 2013; El-Senousy et al., 2014), suggesting an alternative reason 

for the association. However, other research has found increased diarrhoeagenic E. coli 

contamination of food at high ambient temperatures in Bangladesh (Parvez et al., 2017; Black 

et al., 1982). Alternative explanations include increased water usage, which may lead to 
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increased exposure to pathogens, and worse hygiene behaviour in hotter weather (Checkley et 

al., 2000).  

 

Total Rainfall 

Total rainfall and number of sunshine hours at a 1-month lag were found to positively correlate 

with diarrhoea rates in Thái Bình. A 1mm increase in total rainfall was significantly associated 

with a 0.324 unit increase in diarrhoea incidence per 100,000 population in the next month (p 

< 0.001). Given that the 2016 population of Thái Bình was 1.79 million people, a not-

uncommon monthly increase in rainfall of 100mm would correlate with an increase of 580 

cases in the final year of the test set. The SARIMAX model that identified this association 

performed very poorly, which should be acknowledged in the context of these results. 

Nevertheless, the association is worth exploring. Previous research has also found increased 

total monthly rainfall to precede increased diarrhoea rates by 1 month (Phung et al., 2015c) or 

other lags up to 2 months (Phung et al., 2017; Wangdi and Clements, 2017). The percentage of 

households in Vietnam using hygienic latrines rose from 55% in 2002 to 94% in 2020, with 

rural rates rising from 44% to 91% in the same period. Similarly, the percentage of households 

with access to clean water increased from 78% in 2002 to 97% in 2020, with slightly lower 

figures of 74% to 96% in rural areas (General Statistics Office of Vietnam, 2021b). Increased 

rainfall may contaminate water sources for households without access to clean water, and low 

latrine use may contribute to such contamination and diarrhoea rates. Improving water hygiene 

access in the country, therefore, could potentially mean a weakening association between 

rainfall and diarrhoea rates. However, even with hygienic water infrastructure in place, high 

rainfall and associated flooding can overwhelm sewage systems and cause overflow into rivers 

and other bodies of water (Ding et al., 2013).  
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Another possible factor influencing diarrhoea rates is the impact of rainfall on human 

behaviour. Rainy periods could cause people to stay indoors in close-contact, facilitating the 

transmission of diarrhoea-causing illnesses such as rotavirus infection. Heavy rainfall and 

flooding have been shown to reduce access to healthcare and medication in Hà Nội, caused by 

damage to transport infrastructure, damage to healthcare infrastructure, or insufficient money. 

This was accompanied by increased rates of communicable diseases and greater increases in 

reported hypertension in flooded compared to non-flooded areas (Bich et al., 2011). In coastal 

Vietnam, tropical storms have previously caused significant damage to agriculture crops, 

irrigation systems, and schools, as well as negative effects on mental health (Nguyen et al., 

2017). Therefore, infrastructure damage from heavy rainfall and flooding could possibly leave 

households vulnerable to diarrhoeal disease because of reduced access to healthcare, income 

and food insecurity from crop damage, and associated detriment to mental and physical health. 

 

Sunshine Hours 

Sunshine hours were also positively associated with diarrhoea rates in Thái Bình, with a rise in 

cases of 0.910 per 100,000 population per 1-hour increase in monthly sunshine hours (p < 

0.01). Relatively fewer studies have been examined this relationship. In China, sunshine hours 

above 150 per month correlated with higher risk of diarrhoea in those over 20 years at a 0–1 

month lag (Fang et al., 2019). Similarly, Islam et al. (2009) found sunshine hours and 

temperature to synergistically correlate with increased cholera incidence in the same month, 

with high levels of one compensating for low levels of the other. However, it is unclear if this 

pattern also applies to diarrhoea associated with other pathogens. Findings of a negative 

correlation between sunshine hours and bacillary dysentery in the same month suggest it may 

not (Zhao et al., 2016). In a study by Oh et al. (2021), sunshine rate was associated with 

diarrhoea caused by Clostridioides difficile toxin B, but not E. coli O157:H7, Campylobacter 
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spp., or Clostridium perfringens, for the same month. The mechanistic reasons for the 

association between sunshine hours and diarrhoea found here are likewise unclear, though it 

could be due to a positive correlation between sunshine hours and temperature. Alternatively, 

as mentioned previously, the poor SARIMAX performance in Thái Bình may suggest this 

association to be a false positive.  

 

Influenza Rates 

A 1-unit increase in influenza rates per 100,000 population significantly correlated with a 

0.0674-unit increase in diarrhoea rates per 100,000 population at a 1-month lag (p < 0.01) and 

a 0.148-unit increase at a 3-month lag in Kon Tum (p < 0.001). In contrast, a negative 

correlation was observed in Điện Biên, with a 1-unit increase in influenza rates preceding a -

0.162-unit decrease in diarrhoea rates at a 2-month lag (p < 0.001). We have not come across 

other diarrhoea forecasting papers using influenza rates as a predictive factor. While diarrhoea 

can be a symptom of influenza, influenza is generally not attributed as a major cause of the 

diarrhoeal burden in Vietnam or elsewhere (Anders et al., 2015; Huyen et al., 2018; Isenbarger 

et al., 2001; Kotloff et al., 2013; Nguyen et al., 2004; Thompson et al., 2015b). This suggests 

another reason for the correlations found here. Gilca et al. (2012) designed a multivariable Box-

Jenkins transfer function model to explore associations between influenza diagnoses and 

diarrhoea associated with Clostridium difficile infections. Positive influenza tests were found 

to be positively correlated with C. difficile-associated diarrhoea rates one and twelve months 

later, independent of antibiotic prescription. A positive feedback loop has previously been 

described where diarrhoea inflicts malnutrition upon children, thereby making them more 

likely to suffer from further incidence of infectious diseases, malnutrition, and diarrhoea 

(Troeger et al., 2018). Another possible explanation is diarrhoea and influenza being mutually 

impacted by a common external factor. Both diarrhoea and influenza rates have been found to 
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correlate with flooding, with influenza rates rising in the first ten days after flooding and 

infectious diarrhoea rising 10–60 days after flooding depending on pathogenic cause (Ding et 

al., 2019). This is in line with the positive association between influenza rates and diarrhoea at 

1- and 3-month lags in Kon Tum.  

 

The negative association at 2 months in Điện Biên contrasts the findings in Kon Tum and may 

represent either uncertainty in these correlations, or provincial differences in the impact of 

influenza. Điện Biên is a mountainous province in the Northwest region, while Kon Tum is 

located in the central highlands. In addition to the significant meteorological differences we 

observed between central and northern Vietnam for temperature, humidity, evaporation, and 

sunshine hours, the pathogenic causes of diarrhoea can vary between regions in Vietnam. For 

example, Kon Tum has historically had the highest rates of bacillary dysentery (Lee et al., 

2017a), and slight differences in rotavirus-positive diarrhoea have been observed between 

northern, central, and southern Vietnam (Huyen et al., 2018). Therefore, the differences in 

influenza associations could potentially be related to the epidemiological differences in 

diarrhoea transmission. 

 

 

4.2.3 Forecasting Diarrhoea Rates One Month in Advance 
 

As with the DF predictions, LSTM-ATT was found to be the strongest prediction model for 1-

month ahead forecasts based on MAE-based rankings. Additionally, the attention mechanism 

improved results over the simple LSTM model in three out of the five provinces. Five is a 

relatively small number of provinces to differentiate the model performances, given that their 
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performance was competitive in many cases. The CNN model had consistently strong 

performance too with the best mean RMSE-based ranking, which mirrors findings from a 

previous study. Abdullahi and Nitschke (2021) showed CNN models to result in higher 

accuracy than LSTM models when forecasting daily diarrhoea incidence in South Africa. There 

seems to be few other studies for comparison which have ranked deep learning models in 

diarrhoea forecasting. However, other studies have mirrored our findings of self-attention 

improving the performance of LSTM models. Zhu et al. (2019) developed an attention 

mechanism-enhanced multichannel LSTM model for predicting influenza rates from climate 

factors, which outperformed multichannel LSTM, regular LSTM, and traditional RNN models.  

 

While they had higher error metrics in most provinces, the TPE-optimised traditional machine 

learning models—SARIMA and SARIMAX—were occasionally able to compete closely with 

the deep learning models. This was observed when SARIMA outperformed all other models 

as in Điện Biên, and also from RMSEs close to the lowest value in Cao Bằng (SARIMA: 48.4 

vs LSTM: 47.3) and Lào Cai (SARIMAX: 118 vs LSTM-ATT: 110). Surprisingly, the 

multivariate models performed worse in most provinces, which may be due to nonlinear 

relationships between climate factors and diarrhoea incidence that could not be modelled by 

the linear regressions. Our findings seem similar to other diarrhoea and time-series forecasting 

studies, which have found ARIMA(X) and SARIMA(X) models to occasionally compete with 

deep learning models but to have inferior overall performance metrics. For example, in China 

Fang et al. (2020) found a random forest model using climate factors to outcompete ARIMAX 

in diarrhoea prediction (21% vs 28% MAPE). Similarly, Jia et al. (2019) showed a LSTM 

model using seasonal and morbidity data to outperform an ARIMA model, in addition to linear 

regression and XGBoost models, in the prediction of ten infectious diseases in China including 

diarrhoea and dysentery. More recently, Kırbaş et al. (2020) found LSTM to be more accurate 
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than nonlinear autoregression neural network and ARIMA models in predicting 7-step 

coronavirus disease 2019 (COVID-19) cases in Belgium, Germany, France, Denmark, 

Switzerland, the United Kingdom, Finland, and Turkey. Moreover, in a paper on building 

energy load forecasting, ARIMAX had higher performance in one multi-step forecasting test, 

but overall a CNN model increased relative accuracy by 22.6% (Cai et al., 2019). It seems, 

therefore, that deep learning models regularly outperform ARIMA-based models in time-series 

forecasting for diarrhoea, for other infectious diseases, and in other contexts.  

 

While the performance of the diarrhoea models varied throughout the provinces and between 

models, MAPEs of as low as 8.43% were obtained in Thái Bình (by LSTM-ATT). The lowest 

relative scores for the best model (determined by RMSE) in the other provinces were 8.55% in 

Cao Bằng by LSTM, 19.0% in Kon Tum by CNN, 29.3% in Lào Cai by LSTM-ATT, and 284% 

in Điện Biên by SARIMA. The LSTM-ATT model failed to identify the one outbreak in Lào 

Cai, and there were no other outbreaks to evaluate on. It identified non-outbreak months 

correctly in most cases, however, with the lowest accuracy and specificity scores being 0.944 

and 0.971. The lack of outbreaks may indicate that outbreak detection is less suitable for 

diarrhoea models than DF models, as there appears to be a more constant presence of diarrhoea 

rates with less specific outbreaks in the period of 1997 to 2016 in Vietnam (Figures 6, 7). This 

aside, the models appear to be suitably high performing for useful forecasting tools in some 

provinces in Vietnam (e.g., Thái Bình and Cao Bằng), but may be of limited utility in others 

without further development. 
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4.2.4 Multi-step Forecasting 
 

MAPE values of as low as 10.8% were obtained for three-month ahead predictions, as observed 

in Thái Bình, indicating LSTM-ATT to be a strong model for long-term diarrhoea forecasting 

in some provinces. MAPE remained low for predictions  two months ahead in Cao Bằng, as 

well, rising from 11.9% to 13.5%, before increasing to a more moderate value of 22.5% for 

predictions three months in advance. Forecasts two and three months ahead were similar in 

Kon Tum, with values of 30.8% and 29.3%, respectively. These are approximately a 50% 

increase above the 1-month prediction MAPE of 19.9%. The other provinces did not see large 

increases in MAPE, though the 1-month prediction scores were already poor. MAPE rose from 

29.3% to 42.4% in Lào Cai, and from 407% to 418% in Điện Biên, for one to three month 

ahead forecasts. The LSTM-ATT model failed to identify the one outbreak in Lào Cai, and 

there were no other outbreaks to evaluate on. The model’s ability to correctly identify normal 

months, however, remained strong for long-term detections. These findings support the use of 

LSTM-ATT as a high performance long-term predictor of diarrhoea incidence in Thái Bình 

and Cao Bằng, though performance is suboptimal in other provinces.  

 

There have been very few models developed for long-term forecasting of diarrhoea incidence 

that have been published in the literature for comparison. To the best of our knowledge, there 

have been no such climate-based models developed, nor any to produce MAPE values as low 

as 10.8% for 3-month ahead predictions.1 Medina et al. (2007) employed a univariate 

multiplicative Holt-Winters model to forecast diarrhoea incidence in Niono, Mali. In contrast 

to our study, diarrhoea incidence was split into four age groups of 0–11 months, 1–4 years, 5–

 
1 Based on PubMed and IEEE Xplore searches for ((diarrhoea[Title/Abstract]) OR (diarrhea[Title/Abstract])) 

AND ((forecasting[Title/Abstract]) OR (prediction[Title/Abstract])), and other works come across in literature 

review. 
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15 years, and >15 years old. Across the age groups, MAPE values ranged from 23.2% to 42.4% 

for predictions 2-months ahead, and from 22.8 to 43.5% for predictions 3-months ahead. Our 

findings show much lower error scores in some provinces. Furthermore, the long-term deep 

learning models developed here appear to be novel developments for long-term diarrhoea 

forecasting in Vietnam. Deployment of these models, therefore, has the potential for significant 

impact in mitigating morbidity associated with diarrhoea in Vietnam and elsewhere. 

 

 

4.3 Study Limitations 

 

The main limitations of this study were related to the predictors used, the reliability of data, 

and the impact of dengue virus serotypes on DF prediction. Firstly, we focused on climate 

factors (and influenza rates) as prediction variables, however there are many alternative factors 

affecting disease transmission For example, some of these factors include mosquito density, 

human travel metrics, population immunity, temporal data on water quality, and public health 

programs addressing DF and diarrhoea prevention and control. However, most of these suffer 

from limited data availability in Vietnam. Secondly, there were missing data in both the climate 

and case datasets, which may have negatively impacted model performance. Zero counts were 

assumed to be real values, but these could have represented missing data in addition to NAs. 

Finally, we did not attempt to model immunity or dengue virus serotype distribution which 

could impact model performance. Circulation of a new serotype in a region is believed to cause 

outbreaks of symptomatic DF cases every few years, and previous works have noted difficulty 

in modelling these spikes (Bett et al., 2019). During the three year test period, the DF models 
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in this study have shown reasonable accuracy in forecasting these multi-annual spikes. Still, 

data on serotype distribution may improve forecasts further.  

 

 

5. Conclusion 
 

A collection of machine learning models was implemented for forecasting DF and diarrhoeal 

disease incidence in Vietnam, with further analyses conducted on the highest performing 

models. DF prediction was evaluated across 20 provinces throughout Vietnam, covering a wide 

spread of different geographical and climate conditions. This facilitated a stringent assessment 

of our models, and it provided a broader evaluation compared to previous studies using fewer 

climate variables and fewer provinces (Pham et al., 2020; Phung et al., 2015b). The addition 

of an attention mechanism to the LSTM model decreased errors in most provinces for DF and 

diarrhoea forecasting, and the LSTM-ATT model outperformed competing forecast techniques 

overall. LSTM-ATT had the lowest MAE-based ranking for diarrhoea forecasting too, though 

there were only five evaluation provinces, and CNN had the lowest RMSE-based ranking. The 

models developed here provide the groundwork for early-warning systems for DF and 

diarrhoea incidence in Vietnam, and may contribute to reductions in national morbidity and 

mortality. Given the promising results obtained here, further studies developing LSTM-ATT 

and CNN models could be impactful in reducing the global burden of other climate-sensitive 

infectious diseases. Additional research should be carried out on developing and improving 

provincial level models, given the large variation in model performance across locations. This 

variation also suggests different machine learning techniques may be better for different 
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provinces. Thus, the development of superensemble methods for DF and diarrhoea forecasting 

in Vietnam may be able to provide models with more consistent accuracy across provinces. 
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Data and Code Availability 
 

The population data used to calculate disease incidence rates per province per year are publicly 

available from the General Statistics Office of Vietnam at 

https://www.gso.gov.vn/en/population/. The climate and disease data were obtained for a fee 

from IMHEN and NIHE, respectively. Restrictions apply to the availability of the data, which 

is available from the author with the permission of the respective institutions. Alternatively, 

data can be requested directly from IMHEN and NIHE. 

 

The code used for this project is provided in a public GitHub repository, containing the code 

itself and a brief overview of the function of each file. This is available at the following link: 

https://github.com/mullach/climate-sensitive-diseases 

 

 

 

 

 

 

 

 

 

https://www.gso.gov.vn/en/population/
https://github.com/mullach/climate-sensitive-diseases
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Supplementary Material 
 

Table S1: Numbers of layers and hidden sizes for LSTM, LSTM-ATT, and Transformer 

for all provinces. Listed in the format layers – hidden sizes. LSTM = Long Short-Term 

Memory, LSTM-ATT = Attention mechanism-enhanced LSTM. 

 Province LSTM LSTM-ATT Transformer 

Hà Nội 3 - 128 3 - 512 2 – 512 

Hải Phòng 3 - 512 3 - 256 3 – 128 

Quảng Nam 2 - 384 2 - 512 4 – 256 

Quảng Ngãi 3 - 128 4 - 256 3 – 512 

Kon Tum 3 - 384 2 - 256 3 – 256 

Phú Yên 4 - 512 2 - 128 3 - 384 

Ninh Thuận 4 - 512 2 - 384 2 – 256 

Bình Thuận 3 - 256 3 - 256 4 - 128 

Tây Ninh 4 - 256 3 - 384 3 – 128 

Bình Phước 2 - 512 2 - 256 4 – 256 

An Giang 4 - 384 3 - 384 4 – 128 

Tiền Giang 2 - 512 3 - 128 3 – 384 

Cần Thơ 4 - 512 3 - 512 2 – 128 

Trà Vinh 4 - 512 4 – 256 2 – 384 

Kiên Giang 3 - 512 3 – 256 2 – 256 

Sóc Trăng 2 - 512 2 - 256 2 – 384 

Bạc Liêu 4 - 128 3 - 128 2 – 384 

Cà Mau 3 - 384 3 - 256 2 - 384 

Gia Lai 3 - 256 3 - 256 2 - 384 

Nam Định 2 - 512 2 - 256 2 – 512 

Thái Bình 3 - 256 2 - 256 3 – 256 

Quảng Ninh 4 - 256 4 - 384 3 - 128 
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Table S2: Model hyperparameters for diarrhoea predictions. LSTM = Long Short-Term Memory, LSTM-ATT = Attention mechanism-

enhanced LSTM. CNN = Convolutional Neural Network. 

Model Province n Features 
Batch 

Size 

Lookback 

Window 
Epochs 

Learning 

Rate 

Hidden 

Size 

n 

Layers 
Num. Filters 

Dropout 

Rate 

LSTM 

Điện Biên' 3 16 3 120 0.00303 23 1 - - 

Thái Bình 3 16 3 40 0.0045 140 4 - - 

Lào Cai 3 16 3 70 0.000133 70 2 - - 

Kon Tum 3 16 4 140 0.000769 11 9 - - 

Cao Bằng 3 16 3 40 0.00515 8 1 - - 

LSTM-

ATT  

Điện Biên' 3 16 3 360 0.000905 41 2 - - 

Thái Bình 3 16 3 360 0.000273 79 3 - - 

Lào Cai 3 16 3 480 0.000243 25 4 - - 

Kon Tum 3 16 2 180 0.00879 30 4 - - 

Cao Bằng 3 16 2 410 0.00675 15 6 - - 

CNN 

Điện Biên' 3 16 3 70 0.00813 - - [16, 32, 64] 0.685 

Thái Bình 3 16 3 440 0.00646 - - [100, 100, 100] 0.477 

Lào Cai 3 16 3 130 0.00609 - - [16, 32, 64] 0.7 

Kon Tum 3 16 3 140 0.000129 - - [32, 64, 128] 0.732 

Cao Bằng 3 16 3 220 0.00696 - - [64, 64, 64] 0.49 
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Table S3: Shapiro-Wilk normality test results. 

Variable Shapiro statistic P-value 

Influenza cases 0.716 0.00E+00 

Dengue fever cases 0.385 0.00E+00 

Diarrhoea cases 0.628 0.00E+00 

Total evaporation 0.946 0.00E+00 

Total rainfall 0.779 0.00E+00 

Max daily rainfall 0.754 0.00E+00 

Number of raining days 0.939 0.00E+00 

Average temperature 0.907 0.00E+00 

Max average temperature 0.915 0.00E+00 

Min average temperature 0.905 0.00E+00 

Max absolute temperature 0.970 1.40E-45 

Min absolute temperature 0.893 0.00E+00 

Average humidity 0.982 6.19E-38 

Min humidity 0.991 2.18E-28 

Number of sunshine hours 0.992 8.92E-27 

Influenza rates 0.664 0.00E+00 

Dengue fever rates 0.360 0.00E+00 

Diarrhoea rates 0.706 0.00E+00 

 

 

Table S4: Kruskal-Wallis H-test results for differences in climate and disease variables 

between regions in Vietnam. Significant values indicate a difference in population medians 

between north, central, and south Vietnam (*: p < 0.05, **: p < 0.01). 

Variable H Statistic P-value 

Dengue fever rates 6065.968042 0.00E+00*** 

Diarrhoea rates 183.0981062 1.74E-40*** 

Total rainfall 0.716356439 6.99E-01 

Average temperature 1960.319729 0.00E+00*** 

Average humidity 149.5476477 3.36E-33*** 

Total evaporation 1097.991641 3.75E-239*** 

Total sunshine hours 3253.918943 0.00E+00*** 
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Table S5: Pairwise differences in climate and disease variables between regions in 

Vietnam. P-values generated from Dunn’s post-hoc test. Significance thresholds have been 

adjusted using Bonferroni correction for 54 comparisons (*: p < 0.05, **: p < 0.01). 

Variable   P-value 

Region Central North South 

 

Dengue fever rates 

Central 1.00E+00 0.00E+00*** 5.04E-145*** 

North 0.00E+00*** 1.00E+00 0.00E+00*** 

South 5.04E-145*** 0.00E+00*** 1.00E+00 

 

Diarrhoea rates  

Central 1.00E+00 8.04E-37*** 2.13E-02 

North 8.04E-37*** 1.00E+00 4.07E-24*** 

South 2.13E-02 4.07E-24*** 1.00E+00 

 

Average temperature 

Central 1.00E+00 1.50E-146*** 8.22E-47*** 

North 1.50E-146*** 1.00E+00 0.00E+00*** 

South 8.22E-47*** 0.00E+00*** 1.00E+00 

 

Average humidity 

Central 1.00E+00 9.51E-14*** 8.56E-04* 

North 9.51E-14*** 1.00E+00 1.97E-29*** 

South 8.56E-04* 1.97E-29*** 1.00E+00 

 

Total evaporation 

Central 1.00E+00 8.18E-109*** 2.36E-12*** 

North 8.18E-109*** 1.00E+00 1.30E-200*** 

South 2.36E-12*** 1.30E-200*** 1.00E+00 

 

Total sunshine hours 

Central 1.00E+00 1.73E-209*** 1.46E-106*** 

North 1.73E-209*** 1.00E+00 0.00E+00*** 

South 1.46E-106*** 0.00E+00*** 1.00E+00 
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Table S6: Mean absolute errors for all prediction models in 20 Vietnamese provinces. 

Values are colour-coded for each province separately from the lowest value (darker green) to 

the median value (yellow) to the highest value (darker red). LSTM = long short-term memory. 

LSTM-ATT = attention mechanism-enhanced LSTM. CNN = convolutional neural network. 

Poisson = Poisson regression. XGBoost = Extreme Gradient Boosting. SVR = Support Vector 

Regressor with Radial Basis Kernel. SVR-L = Support Vector Regressor with Linear Kernel. 

SARIMA = Seasonal Autoregressive Integrated Moving Average. 

Province 
Mean Absolute Error for Each Model 

LSTM LSTM-ATT CNN TF Poisson XGB SVR SVR-L SARIMA 

Hà Nội 4.926 3.457 5.065 5.695 8.397 7.199 9.077 9.542 8.637 

Hải Phòng 0.276 0.366 0.538 0.702 0.817 0.434 5.196 7.838 2.541 

Quảng Ninh 0.652 0.614 1.223 0.560 1.325 0.876 2.945 3.973 0.786 

Nam Định 0.556 0.492 0.654 0.748 0.796 0.806 1.229 1.428 0.728 

Thái Bình 0.412 0.432 0.428 0.468 0.498 0.420 0.664 0.803 0.522 

Quảng Nam 3.766 4.116 4.039 8.353 8.730 8.216 9.567 11.802 10.505 

Quảng Ngãi 6.699 6.579 6.183 5.913 9.442 6.739 24.494 36.921 7.112 

Phú Yên 6.604 7.342 6.433 10.167 13.429 11.923 15.608 17.670 18.062 

Ninh Thuận 3.733 2.813 3.875 5.351 15.816 17.633 17.566 9.028 5.589 

Bình Thuận 6.606 6.495 6.300 9.692 9.929 7.755 11.225 11.898 7.280 

Tây Ninh 4.405 2.837 5.218 5.305 5.517 6.622 5.460 8.220 5.585 

Bình Phước 5.020 5.353 6.846 7.546 10.957 10.042 14.780 13.715 16.440 

An Giang 4.462 3.006 2.769 3.747 8.476 7.057 6.762 7.021 9.423 

Tiền Giang 3.845 3.371 6.589 4.876 15.919 13.528 10.893 14.204 10.671 

Cần Thơ 2.611 1.884 2.911 4.469 6.725 4.864 16.782 27.370 8.148 

Trà Vinh 3.143 2.702 3.528 4.005 9.376 9.435 11.766 11.692 7.984 

Kiên Giang 1.848 2.093 3.537 3.110 13.859 12.334 14.397 14.652 3.765 

Sóc Trăng 4.393 4.540 3.084 3.304 10.683 10.326 10.310 10.283 36.243 

Bạc Liêu 2.870 2.160 2.008 2.207 11.494 9.399 9.142 8.897 19.599 

Cà Mau 3.553 2.935 4.582 5.710 12.015 11.213 13.103 14.381 16.263 
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Table S7: Selected features for all provinces for dengue fever models. 

Province Feature 1 Feature 2 

Hà Nội Max average temperature Min absolute temperature 

Hải Phòng Max daily rainfall Max average temperature 

Quảng Nam Total rainfall Average temperature 

Quảng Ngãi Number of raining days Average humidity 

Kon Tum Total rainfall Min average temperature 

Phú Yên Total evaporation Number of raining days 

Ninh Thuận Total evaporation Number of raining days 

Bình Thuận Total rainfall Max average temperature 

Tây Ninh Max daily rainfall Average temperature 

Bình Phước Total evaporation Max absolute temperature 

An Giang Max daily rainfall Number of raining days 

Tiền Giang Max daily rainfall Average humidity 

Cần Thơ Average temperature Number of sunshine hours 

Trà Vinh Max daily rainfall Max absolute temperature 

Kiên Giang Max average temperature Max absolute temperature 

Sóc Trăng Number of raining days Number of sunshine hours 

Bạc Liêu Max daily rainfall Max absolute temperature 

Cà Mau Total rainfall Max daily rainfall 

Gia Lai Total evaporation Average humidity 

Nam Định Min absolute temperature Number of sunshine hours 

Thái Bình Max average temperature Number of sunshine hours 

Quảng Ninh Number of raining days Number of sunshine hours 
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Table S8: Mean absolute percentage errors for LSTM, LSTM-ATT, and CNN in 20 

Vietnamese provinces. Values are colour-coded for each province separately from the lowest 

value (darker green) to the median value (yellow) to the highest value (darker red). LSTM = 

long short-term memory. LSTM-ATT = attention mechanism-enhanced LSTM. CNN = 

convolutional neural network.  

Province 
MAPE for Each Model   

LSTM LSTM-ATT CNN 

An Giang 0.741 0.384 0.405 

Cần Thơ 0.770 0.483 1.280 

Tiền Giang 0.645 0.510 1.323 

Sóc Trăng 0.684 0.532 0.517 

Tây Ninh 1.281 0.583 2.104 

Cà Mau 1.210 0.664 1.314 

Bạc Liêu 1.602 0.780 1.248 

Bình Thuận 1.229 0.896 1.568 

Bình Phước 0.879 0.981 0.978 

Phú Yên 0.734 1.053 0.744 

Hà Nội 7.881 1.728 6.305 

Trà Vinh 3.337 1.993 4.460 

Ninh Thuận 2.186 2.725 3.089 

Quảng Ngãi 5.513 4.144 4.370 

Nam Định 6.29E+15 3.05E+15 7.96E+15 

Quảng Nam 2.81E+15 3.48E+15 4.20E+15 

Kon Tum 1.47E+16 4.25E+15 3.90E+16 

Thái Bình 4.95E+15 4.72E+15 4.00E+15 

Quảng Ninh 9.49E+15 7.79E+15 8.64E+15 

Hải Phòng 9.62E+15 9.14E+15 1.60E+16 

 

 

Table S9: Selected features for all provinces for diarrhoea prediction models. 

Province Feature 1 Feature 2 

Điện Biên Max daily rainfall Influenza rates 

Thái Bình Total rainfall Number of sunshine hours 

Lào Cai Min average temperature Number of sunshine hours 

Kon Tum Min absolute temperature Influenza rates 

Cao Bằng Min average temperature Influenza rates 
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Figure S1: Optimisation histories for deep learning models. Root mean square errors are 

shown for each trial as blue dots, and the red line represents the minimum value as the trials 

progress. Histories are displayed for (a) Long Short-Term Memory (LSTM), (b) Attention 

mechanism-enhanced LSTM, and (c) Convolutional Neural Network models. N.B. objective 

value y-scales vary between plots. 
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